知BD⊥ACC1A1.又AC1ACC1A1. ∴BD⊥AC1.∴BD∥NA.∴AC1⊥NA. 又由BD⊥AC可知NA⊥AC. ∴∠C1AC就是平面AFC1與平面ABCD所成二面角的平面角或補(bǔ)角. ???10分 查看更多

 

題目列表(包括答案和解析)

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫出線段s的表達(dá)式,并說(shuō)明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對(duì)應(yīng)線段).
    線段s與線段s1的關(guān)系 m、r的取值或表達(dá)式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

 

查看答案和解析>>

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz(Rez,Imz),
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上。寫出線段s的表達(dá)式,并說(shuō)明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對(duì)應(yīng)線段)。

查看答案和解析>>

22.已知是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為.

(1)若在直線上,求證:在圓上;

(2)給定圓,則存在唯一的線段滿足:①若在圓上,則在線段上;②若是線段上一點(diǎn)(非端點(diǎn)),則在圓上.寫出線段的表達(dá)式,并說(shuō)明理由;

(3)由(2)知線段與圓之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對(duì)應(yīng)線段).

查看答案和解析>>

(上海春卷22)已知是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為.

(1)若在直線上,求證:在圓上;

(2)給定圓),則存在唯一的線段滿足:①若在圓上,則在線段上;② 若是線段上一點(diǎn)(非端點(diǎn)),則在圓上. 寫出線段的表達(dá)式,并說(shuō)明理由;

(3)由(2)知線段與圓之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對(duì)應(yīng)線段).

線段與線段的關(guān)系

的取值或表達(dá)式

所在直線平行于所在直線

所在直線平分線段

線段與線段長(zhǎng)度相等

查看答案和解析>>


同步練習(xí)冊(cè)答案