M.所以= 查看更多

 

題目列表(包括答案和解析)

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

(1)由“若a,b,c∈R則(ab)c=a(bc)”類比“若a,b,c為三個向量則(a•b)•c=a•(b•c)”
(2)在數(shù)列{an} 中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”
(4)若M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是x2+y2=4
上述四個推理中,得出的結(jié)論正確的是
(2)(3)
(2)(3)
(寫出所有正確結(jié)論的序號)

查看答案和解析>>

(1)已知曲線C的極坐標(biāo)方程為
(Ⅰ)若以極點為原點,極軸所在的直線為x軸,求曲線C的直角坐標(biāo)方程;
(Ⅱ)若P(x,y)是曲線C上的一個動點,求3x+4y的最大值
(2)已知a,b,c為實數(shù),且a+b+c+2-2m=0,
(I)求證:;
(II)求實數(shù)m的取值范圍.

查看答案和解析>>

(1)由“若a,b,c∈R則(ab)c=a(bc)”類比“若a,b,c為三個向量則•c=a•”
(2)在數(shù)列{an} 中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”
(4)若M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是x2+y2=4
上述四個推理中,得出的結(jié)論正確的是    (寫出所有正確結(jié)論的序號)

查看答案和解析>>

(1)若點A(a,b)(其中a≠b)在矩陣M=對應(yīng)變換的作用下得到的點為B(-b,a).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=所對應(yīng)變換的作用下得到的新的曲線C′的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位已知直線的極坐標(biāo)方程為,它與曲線為參數(shù))相交于兩點A和B,求|AB|;
(Ⅱ)已知極點與原點重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:(θ為參數(shù)),試求曲線C2關(guān)于直線C1對稱的曲線的直角坐標(biāo)方程.
(3)選修4-5:不等式選講
(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實數(shù)m的取值范圍.
(Ⅱ)已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>


同步練習(xí)冊答案