依題意.所以.不滿足題意. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。

【解析】第一問中,利用導(dǎo)數(shù),因為在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。

解:(1),

因為在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時取等號,

在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實數(shù)k的取值范圍是

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步練習(xí)冊答案