已知變量.滿足則的最大值為 . 查看更多

 

題目列表(包括答案和解析)

已知變量、滿足的最大值為__________。

查看答案和解析>>

已知變量、滿足的最大值為__________。

查看答案和解析>>

請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效。

參考公式:

樣本數(shù)據(jù),,,的標準差

         其中為樣本平均數(shù)

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

,

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.已知函數(shù)的定義域為,的定義域為,則

                空集

2.已知復數(shù),則它的共軛復數(shù)等于

                                  

3.設(shè)變量、滿足線性約束條件,則目標函數(shù)的最小值為

6               7              8                  23

查看答案和解析>>

本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)(本小題滿分7分)選修4—2:矩陣與變換
已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點變換成,求矩陣M。
(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程
過點M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點,試確定的值。
(3)(本小題滿分7分)選修4—5:不等式選講
已知實數(shù)滿足,試確定的最大值。

查看答案和解析>>

本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.

(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點變換成,求矩陣M。

(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程

過點M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點,試確定的值。

(3)(本小題滿分7分)選修4—5:不等式選講

已知實數(shù)滿足,,試確定的最大值。

 

 

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A為銳角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

當B=600時,Y取得最大值!(13’)

 17. 設(shè)答對題的個數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

,       ,

      <nav id="pvcbi"></nav>

      1. 0

        2

        4

        8

        P

         

        的分布列為

        …………………………………10分

          

         

         

         

        (2)E=…………………………12分

        答:該人得分的期望為2分……………………………………………………13分

        18. 解:(1)取AC中點D,連結(jié)SD、DB.

        ∵SA=SC,AB=BC,

        ∴AC⊥SD且AC⊥BD,

        ∴AC⊥平面SDB,又SB平面SDB,

        ∴AC⊥SB-----------4分

        (2)∵AC⊥平面SDB,AC平面ABC,

        ∴平面SDB⊥平面ABC.

        過N作NE⊥BD于E,NE⊥平面ABC,

        過E作EF⊥CM于F,連結(jié)NF,

        則NF⊥CM.

        ∴∠NFE為二面角N-CM-B的平面角---------------6分

        ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

        又∵NE⊥平面ABC,∴NE∥SD.

        ∵SN=NB,

        ∴NE=SD===, 且ED=EB.

        在正△ABC中,由平幾知識可求得EF=MB=

        在Rt△NEF中,tan∠NFE==2,

        ∴二面角N―CM―B的大小是arctan2-----------------------8分

        (3)在Rt△NEF中,NF==

        ∴S△CMN=CM?NF=,

        S△CMB=BM?CM=2-------------11分

        設(shè)點B到平面CMN的距離為h,

        ∵VB-CMN=VN-CMB,NE⊥平面CMB,

        S△CMN?h=S△CMB?NE,∴h==.

        即點B到平面CMN的距離為--------13分

        19. (1)解:當0<t≤10時,
          是增函數(shù),且                3分
          當20<t≤40時,是減函數(shù),且                    6分
          所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘                7分

        (2)解:,所以,講課開始25分鐘時,學生的注意力比講課開始后5分鐘更集中 9分

        (3)當0<t≤10時,令得:                   10分
          當20<t≤40時,令得:                      12分
          則學生注意力在180以上所持續(xù)的時間
          所以,經(jīng)過適當安排,老師可以在學生達到所需要的狀態(tài)下講授完這道題         14分

         

        20.解:

        (1)設(shè)

        最大值為。故

        ………………………(6’)

        (2)由橢圓離心率得雙曲線

        設(shè)……………(7’)

        ①     當AB⊥x軸時,

        .…………(9’)

        ②當時.

        ………………………………………………(12’)

        同在內(nèi)……………(13’)

        =

        =有成立。…………………………(14’).

        21. (1)
          當a≥0時,在[2,+∞)上恒大于零,即,符合要求;      2分
            當a<0時,令,g (x)在[2,+∞)上只能恒小于零
          故△=1+4a≤0或,解得:a≤
          ∴a的取值范圍是                                     6分

        (2)a = 0時,
          當0<x<1時,當x>1時,∴              8分

        (3)反證法:假設(shè)x1 = b>1,由
            ∴
          故
           ,即 、
          又由(2)當b>1時,,∴
          與①矛盾,故b≤1,即x1≤1
          同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分

         

         


        同步練習冊答案
      2. <li id="pvcbi"><progress id="pvcbi"><pre id="pvcbi"></pre></progress></li>