但,這與產(chǎn)生矛盾! ------13分 查看更多

 

題目列表(包括答案和解析)

(2009•上海模擬)在解決問(wèn)題:“證明數(shù)集A={x|2<x≤3}沒(méi)有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒(méi)有最大數(shù).

查看答案和解析>>

在解決問(wèn)題:“證明數(shù)集沒(méi)有最小數(shù)”時(shí),可用反證法證明.

假設(shè)中的最小數(shù),則取,可得:,與假設(shè)中“中的最小數(shù)”矛盾! 那么對(duì)于問(wèn)題:“證明數(shù)集沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)中的最大數(shù),則可以找到   ▲   (用表示),由此可知,,這與假設(shè)矛盾!所以數(shù)集沒(méi)有最大數(shù).

 

查看答案和解析>>

在解決問(wèn)題:“證明數(shù)集A={x|2<x≤3}沒(méi)有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取,可得:,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)是B中的最大數(shù),則可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒(méi)有最大數(shù).

查看答案和解析>>

在解決問(wèn)題:“證明數(shù)集A={x|2<x≤3}沒(méi)有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取,可得:,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)是B中的最大數(shù),則可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒(méi)有最大數(shù).

查看答案和解析>>

在解決問(wèn)題:“證明數(shù)集A={x|2<x≤3}沒(méi)有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒(méi)有最大數(shù).

查看答案和解析>>


同步練習(xí)冊(cè)答案