在“五一 黃金周期間.小明.小亮等同學隨家長一同到熱帶海洋世界游玩.下面是購買門票時.小明與他爸爸的對話.試根據(jù)圖中的信息.解答下列問題 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分)在平面直角坐標系中,點P從原點O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.
(1)實驗操作:在平面直角坐標系中描出點P從點O出發(fā),平移1次后,2次后,3次后可能到達的點,并把相應點的坐標填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點P可能到達的點在我們學過的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請?zhí)顚懴鄳慕馕鍪剑?br />(3)探索運用:點P從點O出發(fā)經(jīng)過次平移后,到達直線上的點Q,且平移的路徑長不小于50,不超過56,求點Q的坐標.

查看答案和解析>>

(本題滿分10分)在規(guī)格為6×6的正方形網(wǎng)格中,有一個L形圖案(如圖所示的陰影部分).
⑴請你用三種不同的方法分別在下圖中再將一個空白的小正方形涂成陰影,使整個陰影部分成為軸對稱圖形.

⑵請你只用一種方法在下圖中再將一個空白的小正方形涂成陰影,使整個陰影部分成為中心對稱圖形.

查看答案和解析>>

1.        (本題滿分10分)在規(guī)格為6×6的正方形網(wǎng)格中,有一個L形圖案(如圖所示的陰影部分).

⑴請你用三種不同的方法分別在下圖中再將一個空白的小正方形涂成陰影,使整個陰影部分成為軸對稱圖形.

 

 

 

 

 

 

 

⑵請你只用一種方法在下圖中再將一個空白的小正方形涂成陰影,使整個陰影部分成為中心對稱圖形.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分10分)

在   ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;

(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是          ;

(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是          ;

(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

 

查看答案和解析>>

(本題滿分10分)在一個不透明的布袋中裝有相同的三個小球,其上面分別標注

數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回

袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.

(1)寫出點M坐標的所有可能的結果;

(2)求點M在直線yx上的概率;

(3)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.

 

查看答案和解析>>

一、1.C    2.D    3.C   4.B    5.C    6.A    7.C    8.D    9. C   10. A

二、11.  12.   13.62°    14.4    15.(n+2)2-4n=n2+4   16.25

17.5    18.15°或75°

三、19.原式=a2+a-(a2-1)            ……(3分)

        =a2+a-a2+1              ……(6分)

        =a+1                   ……(9分)

20.(1)畫圖如圖所示;         ……(4分)

(2)點A/的坐標為(-2,4);  ……(7分)

(3)的長為:.        ……(10分)

21.(1)設小明他們一共去了x個成人,則去了學生(12-x)人,依題意,得

        35x+0.5×35(12-x)=350                    ………………………………(3分)

        解這個方程,得x=8                        ………………………………(5分)

        答:小明他們一共去了8個成人,去了學生4人.      ……………………(6分)

(2)若按16個游客購買團體票,需付門票款為35×0.6×16=336(元)    ……(8分)

     ∵ 336<350,                            ………………………………(9分)

     ∴ 按16人的團體購票更省錢.             ………………………………(10分)

22.(1)李華所在班級的總人數(shù)為:

14÷35%=40(人).     ……(3分)

        愛好書畫的人數(shù)為:

        40-14-12-4=10(人). ……(6分)

    (2)書畫部分的條形圖如圖所示.(9分)

    (3)答案不唯一.(每寫對一條給1分)如:表示“球類”的扇形圓心角為:

360×=126°愛好音樂的人數(shù)是其他愛好人數(shù)的3倍等.     …………(11分)

23.(1)由圖象可知公司從第4個月末以后開始扭虧為盈.     ………………………(2分)

   (2)由圖象可知其頂點坐標為(2,-2),

故可設其函數(shù)關系式為:y=a(t-2)2-2.         ………………………………(4分)

∵ 所求函數(shù)關系式的圖象過(0,0),于是得

   a(0-2)2-2=0,解得a= .                ………………………………(5分)

        ∴ 所求函數(shù)關系式為:S=(t-2)2-2或S=t2-2t.   ………………………(7分)

   (3)把t=7代入關系式,得S=×72-2×7=10.5     ……………………………(10分)

         把t=8代入關系式,得S=×82-2×8=16

         16-10.5=5.5                              ………………………………(11分)

         答:第8個月公司所獲利是5.5萬元.        ………………………………(12分)

24.(1)∵ BC、DE分別是兩個等腰直角△ADE、△ABC的斜邊,

∴ ∠DAE=∠BAC=90°,

∴ ∠DAE-∠DAC=∠BAC-∠DAC,∴ ∠CAE=∠BAD.          ………………(2分)

        在△ACE和△ABD中,

                                    ………………………………(4分)

∴ △ACE≌△ABD(S?A?S).               ………………………………(5分)

(2)①∵ AC=AB=,

∴ BC=AC2+AB2=,

        ∴ BC=4.                                  ………………………………(6分)

        ∵ AB=AC, ∠BAC=90°,

        ∴ ∠ACB=∠B=45°,

        ∵ △ACE≌△ABD

∴ ∠ACB=∠B=45°

 ∴ ∠DCE=90°.                            ………………………………(7分)

        ∵ △ACE≌△ABD,

        ∴ CE=BD=x,而BC=4,∴ DC=4-x,

        ∴ Rt△DCE的面積為DC?CE=(4-x)x.

        ∴ (4-x)x=1.5                          ………………………………(9分)

        即x2-4x+3=0.  解得x=1或x=3.            ………………………………(11分)

 ② △DCE存在最大值,理由如下:

    設△DCE的面積為y,于是得y與x的函數(shù)關系式為:

y=(4-x)x   (0<x<4)                   ………………………………(12分)

 =-(x-2)2+2

∵ a=-<0, ∴ 當x=2時,函數(shù)y有最大值2.     ……………………(13分)

      又∵ 此時,x滿足關系式0<x<4,

        故當x=2時,△DCE的最大面積為2.       ………………………………(14分)

 


同步練習冊答案