說(shuō)明:雖然依題意只能列出3個(gè)方程.而方程所涉及的未知數(shù)有4個(gè).但將作為一個(gè)整體.問(wèn)題即可迎刃而解.在求時(shí).巧用等差中項(xiàng)的性質(zhì)也值得關(guān)注.知識(shí)的靈活應(yīng)用.來(lái)源于對(duì)知識(shí)系統(tǒng)的深刻理解. 查看更多

 

題目列表(包括答案和解析)

現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.

設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件

.

(1)這4個(gè)人中恰有2人去參加甲游戲的概率

(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

(3)的所有可能取值為0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

隨機(jī)變量的數(shù)學(xué)期望.

 

查看答案和解析>>

某車(chē)間有5名工人獨(dú)立的工作,據(jù)統(tǒng)計(jì)每個(gè)工人在1小時(shí)內(nèi)平均有12分鐘需要電力.
(1)求每名工人在1小時(shí)內(nèi)需要電力的概率;
(2)求在同一時(shí)刻有3個(gè)工人需要電力的概率;
(3)如果最多只能供應(yīng)3個(gè)工人需要的電力,求超過(guò)負(fù)荷的概率.

查看答案和解析>>

某學(xué)生填報(bào)高考志愿,有m個(gè)不同的學(xué)?晒┻x擇,若只能填3個(gè)志愿,且按第一、二、三志愿依次填寫(xiě),求該生填寫(xiě)志愿的方式的種數(shù).

查看答案和解析>>

函數(shù)在同一個(gè)周期內(nèi),當(dāng) 時(shí),取最大值1,當(dāng)時(shí),取最小值。

(1)求函數(shù)的解析式

(2)函數(shù)的圖象經(jīng)過(guò)怎樣的變換可得到的圖象?

(3)若函數(shù)滿足方程求在內(nèi)的所有實(shí)數(shù)根之和.

【解析】第一問(wèn)中利用

又因

       函數(shù)

第二問(wèn)中,利用的圖象向右平移個(gè)單位得的圖象

再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,

第三問(wèn)中,利用三角函數(shù)的對(duì)稱性,的周期為

內(nèi)恰有3個(gè)周期,

并且方程內(nèi)有6個(gè)實(shí)根且

同理,可得結(jié)論。

解:(1)

又因

       函數(shù)

(2)的圖象向右平移個(gè)單位得的圖象

再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,

(3)的周期為

內(nèi)恰有3個(gè)周期,

并且方程內(nèi)有6個(gè)實(shí)根且

同理,

故所有實(shí)數(shù)之和為

 

查看答案和解析>>

設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

(1)求正實(shí)數(shù)a的取值范圍;

(2)比較的大小,說(shuō)明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問(wèn)中,利用

解:(1)由已知:,依題意得:≥0對(duì)x∈[1,+∞恒成立

∴ax-1≥0對(duì)x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

∴n≥2時(shí):f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>


同步練習(xí)冊(cè)答案