(Ⅰ)求角的大小, 查看更多

 

題目列表(包括答案和解析)

某小區(qū)規(guī)劃一塊周長為2a(a為正常數(shù))的矩形停車場,其中如圖所示的直角三角形ADP內(nèi)為綠化區(qū)域.且∠PAC=∠CAB.設(shè)矩形的長AB=x,AB>AD
(1)求線段DP的長關(guān)于x的函數(shù)l(x)表達(dá)式并指出定義域;
(2)應(yīng)如何規(guī)劃矩形的長AB,使得綠化面積最大?

查看答案和解析>>

(本小題12分)設(shè)函數(shù).

(1)求函數(shù)的最大值和最小正周期;

設(shè)A,B,C為的三個(gè)內(nèi)角,若且C為銳角,求.

查看答案和解析>>

(意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個(gè)投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會(huì)贏得一種意大利餡餅中的一個(gè),投鏢靶中畫有三個(gè)同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時(shí).可得到一個(gè)大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時(shí),可得到一個(gè)中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時(shí),可得到一個(gè)小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個(gè)顧客都能投鏢中靶,并假設(shè)每個(gè)圓的周邊線沒有寬度,即每個(gè)投鏢不會(huì)擊中線上,試求一顧客將嬴得:

(a)一張大餡餅,

(b)一張中餡餅,

(c)一張小餡餅,

(d)沒得到餡餅的概率

查看答案和解析>>

(本小題滿分12分)

有一塊邊長為6m的正方形鋼板,將其四個(gè)角各截去一個(gè)邊長為x的小正方形,然后焊接成一個(gè)無蓋的蓄水池。

(Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;

(Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;

(Ⅲ)蓄水池的底邊為多少時(shí),蓄水池的容積最大?最大容積是多少?

查看答案和解析>>


(本小題滿分12分) 已知向量,,.
(1)若求向量的夾角;
(2)當(dāng)時(shí),求函數(shù)的最大值。

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學(xué)期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標(biāo)系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,,                  (6分)

易求為平面PAC的一個(gè)法向量.

為平面PDC的一個(gè)法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè),則

   ,

解得點(diǎn),即   (13分)

(不合題意舍去)或

所以當(dāng)的中點(diǎn)時(shí),直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設(shè)直線的方程為:

,所以的方程為                     (4分)

點(diǎn)的坐標(biāo)為.

可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

設(shè)

設(shè),則

                                      (11分)

當(dāng)時(shí)上式是一個(gè)與無關(guān)的常數(shù).

所以存在定點(diǎn),相應(yīng)的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當(dāng)時(shí)               (2分)

上遞增,在上遞減

所以在0和2處分別達(dá)到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當(dāng)時(shí),

<li id="kib41"></li>

市一次模理數(shù)參答―3(共4頁)

                                        (7分)

,

上遞減,在上遞增.

從而上遞增

因此                           (10分)

(Ⅲ)假設(shè),即=

                                     (12分)

,(x)=0的兩根可得,

從而有

≥2,這與<2矛盾.                                

故直線與直線不可能垂直.                                               (15分)

 

 

 


同步練習(xí)冊答案