題目列表(包括答案和解析)
(本小題滿分12分)如圖,已知拋物線與關(guān)于軸對稱,并與軸交于點(diǎn)M,與軸交于點(diǎn)A和B.
1.(1)求出的解析式,試猜想出一般形式關(guān)于軸對稱的二次函數(shù)解析式(不要求證明);
2.(2)若AB的中點(diǎn)是C,求;
3.(3)如果一次函數(shù)過點(diǎn),且與拋物線,相交于另一點(diǎn),如果 ,且,求的值。
(本小題滿分10分)如圖,已知拋物線經(jīng)過A(-2,0),B(-3,3) 及原點(diǎn),頂點(diǎn)為.
(1)求拋物線的解析式;
(2)若點(diǎn)在拋物線上,點(diǎn)在拋物線的對稱軸上,且以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo);
(3)是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)作軸,垂足為,是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(本小題滿分6分)
已知拋物線的解析式為
1.(1)求拋物線的頂點(diǎn)坐標(biāo);
2.(2)求出拋物線與x軸的交點(diǎn)坐標(biāo);
3.(3)當(dāng)x取何值時(shí)y>0?
(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).
(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存 在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
(本小題滿分7分)如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點(diǎn)A(-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B.
(1)求一次函數(shù)解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);
(4)設(shè)拋物線的對稱軸交x軸與點(diǎn)E,聯(lián)結(jié)AP交y軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QD、QN,請直接寫出QD+QN的最小值.
一、1、C;2、C;3、D;4、A;5、C;6、B;7、D;8、B;9、A;10、B;
二、11、8;2、且;13、;14、或;
15、6;16、六;17、旋轉(zhuǎn)中心和旋轉(zhuǎn)角;18、9:30;19、4;20、5;
三、21、原式=;當(dāng)時(shí),原式=;
22、如圖,易算出AE=
由比例可知:CH=
故影響采光。
23、11,17,59;S=6n-1;
24、(1)y=―x2+2x+3;(2)x=1,M(1,4),(3)9;
25、(1)相同點(diǎn):甲臺階與乙臺階的各階高度參差不齊,不同點(diǎn):甲臺階各階高度的極差比乙臺階;
(2)甲臺階,因?yàn)榧着_階各階高度的方差比乙臺階小;
(3)使臺階的各階高度的方差越小越好。
26、(1)r=3;(2)3<r<4;(3)r=4或5;(4)r>4且r≠5;
27、(1)a=110,b=90;提示:可由解得;
(2)從表中的信息可知:該農(nóng)戶每年新增林地畝數(shù)的增長率為30%,
則2004年林地的畝數(shù)為26×(1+30%)=33.8畝,
2005年林地的畝數(shù)為33.8×(1+30%)=43.94畝,
故2005年的總收入為2000+43.94×110+33.8×90=8775.4元。
28、(1)P(摸到紅球)= P(摸到同號球)=;故沒有利;
(2)每次的平均收益為,
故每次平均損失元。
29、
30、(1)(6―x , x );
(2)設(shè)ㄓMPA的面積為S,
在ㄓMPA中,MA=6―x,MA邊上的高為x,其中,0≤x≤6.
∴S=(6―x)×x=(―x2+6x) = ― (x―3)2+6
∴S的最大值為6, 此時(shí)x =3. (3)延長NP交x軸于Q,則有PQ⊥OA
①若MP=PA ∵PQ⊥MA ∴MQ=QA=x. ∴3x=6, ∴x=2;
②若MP=MA,則MQ=6―2x,PQ=x,PM=MA=6―x
在RtㄓPMQ 中,∵PM2=MQ2+PQ2 ∴(6―x) 2=(6―2x) 2+ (x) 2
∴x=
③若PA=AM,∵PA=x,AM=6―x
∴x=6―x ∴x=
綜上所述,x=2,或x=,或x=。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com