已知二次函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表達(dá)式;
(2)設(shè)1<m≤e,H(x)=g(x+
1
2
)+mlnx-(m+1)x+
9
8
,求證:H(x)在[1,m]上為減函數(shù);
(3)在(2)的條件下,證明:對任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函數(shù)f(x)=x2+bx+1(b∈R),滿足f(-1)=f(3).
(1)求b的值;
(2)當(dāng)x>1時,求f(x)的反函數(shù)f-1(x);
(3)對于(2)中的f-1(x),如果f-1(x)>m(m-
x
)
[
1
4
,
1
2
]
上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c(x∈R)的最小值為0,且滿足條件①f(x-4)=f(2-x),②對任意的x∈R有f(x)≥x,當(dāng)x∈(0,2)時,f(x)≤(
x+1
2
)2
,那么f(a)+f(c)-f(b)的值為( 。
A、0
B、
7
32
C、
9
16
D、1

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x都有f(x)≥0,則
f(1)
f′(0)
的最小值為(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

已知二次函數(shù)f(x)=x2+bx+c(b、c∈R),不論α、β為何實數(shù),恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求證:b+c=-1;
(2)求證:c≥3;
(3)若函數(shù)f(sinα)的最大值為8,求b、c的值.

查看答案和解析>>

一、選擇題

1.B    2.C    3.C    4.C    5.B    6.A

7.A    8.D    9.B    10.D   

二、填空題

11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

三、解答題

16.解:(1)由已知得 解得.設(shè)數(shù)列的公比為

,可得.又,可知,

,

解得. 由題意得. 

故數(shù)列的通項為.……………………………6分

   (2)由于   由(1)得 

   

=  ……………..13分

17.(1)∵=a, AB=2a,BC=a,

E為的中點(diǎn)。

DE⊥CE……(2分)

又∵∴DE⊥EB  ,而                      

∴DE⊥平面BCE…(6分)

(2) 取DC的中點(diǎn)F,則EF⊥平面BCD,作FH⊥BD于H,連EH,則∠EHF就是二面角E-BD-C的一個平面角。……………………(8分)

由題意得  EF=a,在Rt△ 中,…………(10分)

∠EHF=.……………………………………………(13分)

18.解:由已知,,

(1)若。若A是直角,則k=-2;若B是直角,則

k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為

(2)若,且k≠.區(qū)間長度L=6.若B是鈍角,則-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是鈍角的概率

k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為.

求△ABC是直角三角形的概率.

19.解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以為焦點(diǎn),

長半軸為2的橢圓.它的短半軸,

故曲線C的方程為.????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)設(shè),其坐標(biāo)滿足

消去y并整理得,

.??????????????????????????????????????????????????????????????????????? 6分

,即.而,

于是

所以時,,故.???????????????????????????????????????????????????????? 8分

當(dāng)時,

,

所以.   13分

20.解:(1) 

當(dāng),

函數(shù)有一個零點(diǎn);當(dāng)時,,函數(shù)有兩個零點(diǎn)。…….3分

   (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

由②知對,都有

又因為恒成立, 

,即,即

,

當(dāng)時,,其頂點(diǎn)為(-1,0)滿足條件①,又,都有,滿足條件②。

∴存在,使同時滿足條件①、②。…..8分

   (3)令,則

,

內(nèi)必有一個實根。即,使成立!.13分

21.(1)1;    (2)

 

(2)(1)設(shè)M=,則有==,

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P’(x’,y’).

因為,所以又m:

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

不等式證明選講)若,證明 。

柯西不等式一步可得

 

www.ks5u.com

 

 


同步練習(xí)冊答案