已知.函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知數(shù)學(xué)公式,函數(shù)y=f(x)與函數(shù)y=g(x)滿足如下對應(yīng)關(guān)系:當(dāng)點(diǎn)(x,y)在y=f(x)的圖象上時,點(diǎn)數(shù)學(xué)公式在y=g(x)的圖象上,且f(0)=0,g(-1)=1.
(1)求函數(shù)y=g(x)的解析式;
(2)指出函數(shù)y=g(x)的單調(diào)遞增區(qū)間,并用單調(diào)性定義證明之.

查看答案和解析>>

已知,函數(shù)

(1)求的值.

(2)求函數(shù)

查看答案和解析>>

(12分)已知,函數(shù),(為自然對數(shù)的底數(shù))

(I)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若函數(shù)在(-1,1)上單調(diào)遞增,求的取值范圍;

(Ⅲ)函數(shù)能否為上的單調(diào)函數(shù)?若能,求出的取值范圍;若不能,請說明理由。

查看答案和解析>>

已知,函數(shù),在是一個單調(diào)函數(shù)。

(1)試問的條件下,在能否是單調(diào)遞減函數(shù)?說明理由。

(2)若上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍。

(3)設(shè),比較的大小。

查看答案和解析>>

已知,函數(shù),當(dāng)時,.(1)求常數(shù)的值

(2)設(shè),求的單調(diào)區(qū)間

查看答案和解析>>

說明:

    一、本解答給出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則。

二、對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過該部分正確解答所給分?jǐn)?shù)的一半;如果后續(xù)部分的解答存在較嚴(yán)重的錯誤,則不再給分。

三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

四、每題只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分。

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

C

C

D

A

A

B

C

B

D

二、填空題:

11.40.6,1.1  12. 13. 14.30  15.  16.(1,1),(2,2),(3,4),(4,8)

三、解答題:

  17.(Ⅰ),                         ①            …………………2分

    又, ∴                 ②             ……………… 4分

    由①、②得              …………………………………………………………… 6分

   (Ⅱ)  ……………………………………… 8分

                 …………………………………………………………………… 10分

     …………………………………………………………………………12分

18.(Ⅰ)設(shè)點(diǎn),則

,

,又,

,∴橢圓的方程為:    …………………………………………7分

(Ⅱ)當(dāng)過直線的斜率不存在時,點(diǎn),則;

     當(dāng)過直線的斜率存在時,設(shè)斜率為,則直線的方程為

設(shè),由    得:

       …………………………………………10分

 

                                           ……13分

綜合以上情形,得:    ……………………………………………………14分

∴GH∥AD∥EF,∴E,F(xiàn),G,H四點(diǎn)共面. ……………………1分

又H為AB中點(diǎn),∴EH∥PB. 又EH面EFG,PB平面EFG,

∴PB∥平面EFG.                 ………………………………4分

   (Ⅱ)取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

∴∠EGM(或其補(bǔ)角)就是異面直線EG與BD所成的角.……6分

     在Rt△MAE中, ,

     同理,又GM=,………………7分

∴在△MGE中,     ………………8分

故異面直線EG與BD所成的角為arccos,                   ………………………………9分

<sup id="vutlo"><acronym id="vutlo"><small id="vutlo"></small></acronym></sup>
  • <dfn id="vutlo"><legend id="vutlo"></legend></dfn>

    又AB∩PA=A,∴AD⊥平面PAB. ……………………………………10分

    又∵E,F(xiàn)分別是PA,PD中點(diǎn),∴EF∥AD,∴EF⊥平面PAB.   

    又EF面EFQ,∴面EFQ⊥面PAB. ………………………………11分

    過A作AT⊥ER于T,則AT⊥平面EFQ,

    ∴AT就是點(diǎn)A到平面EFQ的距離. ………………………………12分

    設(shè),則

        在,            …………………………13分

         解得 故存在點(diǎn)Q,當(dāng)CQ=時,點(diǎn)A到平面EFQ的距離為0.8. ……………………… 14分

    解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

    <li id="vutlo"><abbr id="vutlo"><pre id="vutlo"></pre></abbr></li>
    <span id="vutlo"><strong id="vutlo"></strong></span>

         (Ⅰ) …………1分

          設(shè),  即,

         

                    ……………3分

          ,∴PB∥平面EFG. ………………………………………………………… 4分

         (Ⅱ)∵,              …………………………………………5分

          ,            ……………………… 8分

      故異面直線EG與BD所成的角為arcos.            …………………………………… 9分

         (Ⅲ)假設(shè)線段CD上存在一點(diǎn)Q滿足題設(shè)條件,令

          ∴點(diǎn)Q的坐標(biāo)為(2-m,2,0), ……………………………………10分

          而, 設(shè)平面EFQ的法向量為,則

           

          令,             ……………………………………………………12分

          又, ∴點(diǎn)A到平面EFQ的距離,……13分

          即,不合題意,舍去.

          故存在點(diǎn)Q,當(dāng)CQ=時,點(diǎn)A到平面EFQ的距離為0.8.           ……………………14分

      20. (Ⅰ)          ………………2分

      當(dāng)時,,        …………4分

         (Ⅱ)是單調(diào)增函數(shù);   ………………6分

      是單調(diào)減函數(shù);      ………………8分

         (Ⅲ)是偶函數(shù),對任意都有成立

      *  對任意都有成立

      1°由(Ⅱ)知當(dāng)時,是定義域上的單調(diào)函數(shù),

      對任意都有成立

      時,對任意都有成立                   …………10分

      2°當(dāng)時,,由

      上是單調(diào)增函數(shù)在上是單調(diào)減函數(shù),∴對任意都有

      時,對任意都有成立               ………………12分

      綜上可知,當(dāng)時,對任意都有成立           .……14分

      21、(Ⅰ)設(shè)等差數(shù)列{}的公差是,則,解得

      所以                ……………………………………2分

      =-1<0

      適合條件①;又,所以當(dāng)=4或5時,取得最大值20,即≤20,適合條件②。綜上所述, …………………………………………4分

      (Ⅱ)因?yàn)?sub>,所以當(dāng)n≥3時,,此時數(shù)列單調(diào)遞減;當(dāng)=1,2時,,即

      因此數(shù)列中的最大項是,所以≥7………………………………………………………8分

      (Ⅲ)假設(shè)存在正整數(shù),使得成立,

      由數(shù)列的各項均為正整數(shù),可得                ……………10分

      因?yàn)?sub>                 ……11分

      由              …13分

      因?yàn)?sub>

      依次類推,可得            ……………………………………………15分

      又存在,使,總有,故有,這與數(shù)列()的各項均為正整數(shù)矛盾!

      所以假設(shè)不成立,即對于任意,都有成立.           ………………………16分

       


      同步練習(xí)冊答案