21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)已知函數(shù).(Ⅰ)當(dāng)時,求證:函數(shù)上單調(diào)遞增;(Ⅱ)若函數(shù)有三個零點,求的值;

(Ⅲ)若存在,使得,試求的取值范圍.

查看答案和解析>>

(本小題滿分16分) 設(shè)為實數(shù),函數(shù). (1)若,求的取值范圍; (2)求的最小值; (3)設(shè)函數(shù),求不等式的解集.

查看答案和解析>>

(本小題滿分16分)

按照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)求關(guān)于、的表達式;當(dāng)時,求證:=

(2)設(shè),當(dāng)、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長4的⊙的方程;

(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長為   4的⊙的方程;

(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

說明:

    一、本解答給出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準制定相應(yīng)的評分細則。

二、對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過該部分正確解答所給分數(shù)的一半;如果后續(xù)部分的解答存在較嚴重的錯誤,則不再給分。

三、解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得的累加分數(shù)。

四、每題只給整數(shù)分數(shù),選擇題和填空題不給中間分。

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

C

C

D

A

A

B

C

B

D

二、填空題:

11.40.6,1.1  12. 13. 14.30  15.  16.(1,1),(2,2),(3,4),(4,8)

三、解答題:

  17.(Ⅰ),                         ①            …………………2分

    又, ∴                 ②             ……………… 4分

    由①、②得              …………………………………………………………… 6分

   (Ⅱ)  ……………………………………… 8分

                 …………………………………………………………………… 10分

     …………………………………………………………………………12分

18.(Ⅰ)設(shè)點,則

,

,又

,∴橢圓的方程為:    …………………………………………7分

(Ⅱ)當(dāng)過直線的斜率不存在時,點,則;

     當(dāng)過直線的斜率存在時,設(shè)斜率為,則直線的方程為,

設(shè),由    得:

       …………………………………………10分

 

                                           ……13分

綜合以上情形,得:    ……………………………………………………14分

∴GH∥AD∥EF,∴E,F(xiàn),G,H四點共面. ……………………1分

又H為AB中點,∴EH∥PB. 又EH面EFG,PB平面EFG,

∴PB∥平面EFG.                 ………………………………4分

   (Ⅱ)取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

∴∠EGM(或其補角)就是異面直線EG與BD所成的角.……6分

     在Rt△MAE中,

     同理,又GM=,………………7分

∴在△MGE中,     ………………8分

故異面直線EG與BD所成的角為arccos,                   ………………………………9分

又AB∩PA=A,∴AD⊥平面PAB. ……………………………………10分

又∵E,F(xiàn)分別是PA,PD中點,∴EF∥AD,∴EF⊥平面PAB.   

又EF面EFQ,∴面EFQ⊥面PAB. ………………………………11分

過A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點A到平面EFQ的距離. ………………………………12分

設(shè),則

    在,            …………………………13分

     解得 故存在點Q,當(dāng)CQ=時,點A到平面EFQ的距離為0.8. ……………………… 14分

解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

      1. <menuitem id="fh0ue"><fieldset id="fh0ue"></fieldset></menuitem>
          <strong id="fh0ue"></strong>

               (Ⅰ) …………1分

                設(shè),  即,

               

                          ……………3分

                ,∴PB∥平面EFG. ………………………………………………………… 4分

               (Ⅱ)∵,              …………………………………………5分

                ,            ……………………… 8分

            故異面直線EG與BD所成的角為arcos.            …………………………………… 9分

               (Ⅲ)假設(shè)線段CD上存在一點Q滿足題設(shè)條件,令

                ∴點Q的坐標(biāo)為(2-m,2,0), ……………………………………10分

                而, 設(shè)平面EFQ的法向量為,則

                 

                令,             ……………………………………………………12分

                又, ∴點A到平面EFQ的距離,……13分

                即,不合題意,舍去.

                故存在點Q,當(dāng)CQ=時,點A到平面EFQ的距離為0.8.           ……………………14分

            20. (Ⅰ)          ………………2分

            當(dāng)時,,        …………4分

               (Ⅱ)是單調(diào)增函數(shù);   ………………6分

            是單調(diào)減函數(shù);      ………………8分

               (Ⅲ)是偶函數(shù),對任意都有成立

            *  對任意都有成立

            1°由(Ⅱ)知當(dāng)時,是定義域上的單調(diào)函數(shù),

            對任意都有成立

            時,對任意都有成立                   …………10分

            2°當(dāng)時,,由

            上是單調(diào)增函數(shù)在上是單調(diào)減函數(shù),∴對任意都有

            時,對任意都有成立               ………………12分

            綜上可知,當(dāng)時,對任意都有成立           .……14分

            21、(Ⅰ)設(shè)等差數(shù)列{}的公差是,則,解得

            所以                ……………………………………2分

            =-1<0

            適合條件①;又,所以當(dāng)=4或5時,取得最大值20,即≤20,適合條件②。綜上所述, …………………………………………4分

            (Ⅱ)因為,所以當(dāng)n≥3時,,此時數(shù)列單調(diào)遞減;當(dāng)=1,2時,,即

            因此數(shù)列中的最大項是,所以≥7………………………………………………………8分

            (Ⅲ)假設(shè)存在正整數(shù),使得成立,

            由數(shù)列的各項均為正整數(shù),可得                ……………10分

            因為                 ……11分

            由              …13分

            因為

            依次類推,可得            ……………………………………………15分

            又存在,使,總有,故有,這與數(shù)列()的各項均為正整數(shù)矛盾!

            所以假設(shè)不成立,即對于任意,都有成立.           ………………………16分

             


            同步練習(xí)冊答案
            <ol id="fh0ue"></ol>