題目列表(包括答案和解析)
如圖,以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,3),直線x=-3交x軸于點(diǎn)B,P為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交于直線x=﹣3于點(diǎn)C.過(guò)P點(diǎn)作直線MN平行于x軸,交y軸于M,交直線x=-3于點(diǎn)N.
(1)當(dāng)點(diǎn)C在第二象限時(shí),求證:△OPM≌△PCN;
(2)設(shè)AP長(zhǎng)為m,以P、O、B、C為頂點(diǎn)的四邊形的面積為S,請(qǐng)求出S與M之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=-3上移動(dòng),△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點(diǎn)P的坐標(biāo),如果不可能,請(qǐng)說(shuō)明理由.
對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式。但對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接運(yùn)用公式了。此時(shí),我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:
x2+2ax-3a2= (x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像這樣,先添一適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”。
(1)利用“配方法”分解因式:a2-4a+3;(4分)
(2)若a+b=5,ab=6,求:a2+b2的值。 (3分)
如圖,點(diǎn)P(-m,m2)拋物線:y = x2上一點(diǎn),將拋物線E沿x軸正方向平移2m個(gè)單位得到拋物線F,拋物線F的頂點(diǎn)為B,拋物線F交拋物線E于點(diǎn)A,點(diǎn)C是x軸上點(diǎn)B左側(cè)一動(dòng)點(diǎn),點(diǎn)D是射線AB上一點(diǎn),且∠ACD = ∠POM.問(wèn)△ACD能否為等腰三角形?
若能,求點(diǎn)C的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
說(shuō)明:⑴如果你反復(fù)探索,沒(méi)有解決問(wèn)題,請(qǐng)寫(xiě)出探索過(guò)程(要求至少寫(xiě)3步);⑵在你完成⑴之后,可以從①、②中選取一個(gè)條件,完成解答
①m = 1;②m = 2.
附加題:如下圖,若將上題“點(diǎn)C是x軸上點(diǎn)B左側(cè)一動(dòng)點(diǎn)”改為“點(diǎn)C是直線y =-m2上點(diǎn)N左側(cè)一動(dòng)點(diǎn)”,其他條件不變,探究上題中的問(wèn)題.
如圖,某市一處十字路口立交橋的截面是由拋物線和兩個(gè)對(duì)稱的三角形組成.其中拋物線可以用y=-x2+8表示,線段CD和為兩段對(duì)稱的上橋斜坡,其坡度為1∶4.AD和是兩側(cè)的支柱,OA和為兩個(gè)方向的汽車通行區(qū),寬都為15米.
(1)求的長(zhǎng);
(2)BE和為支撐斜坡的立柱,其高都為4米,相應(yīng)的AB和為兩個(gè)方向的行人及非機(jī)動(dòng)車通行區(qū),試求AB和的寬;
(3)按規(guī)定,汽車通過(guò)該橋下時(shí),載貨最高處和橋拱之間的距離不得小于0.4米,今有一大型運(yùn)貨汽車,裝載某大型設(shè)備后,其寬為4米,車載大型設(shè)備的頂部與地面的距離均為7米,那么這輛運(yùn)貨汽車能否從OA(或)區(qū)域安全通過(guò)?請(qǐng)說(shuō)明理由.
某旅游勝地欲開(kāi)發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開(kāi)口向下,BC所在的拋物線以C為頂點(diǎn)、開(kāi)口向上.以過(guò)山腳(點(diǎn)C)的水平線為x軸、過(guò)山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-x2+8,BC所在拋物線的解析式為y=(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20 cm,長(zhǎng)度因坡度的大小而定,但不得小于20 cm,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(如上圖).
①分別求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到1 cm);
②這種臺(tái)階不能一起鋪到山腳,為什么?(可取點(diǎn)驗(yàn)證)
(3)在山坡上的700 m高度(點(diǎn)D)處恰好有一小塊平地,可以用來(lái)建造索道站.索道站的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1 600(m).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開(kāi)口向上的拋物線,解析式為y=(x-16)2.試求索道的最大懸空高度.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com