(2)將拋物線怎樣平移.使得平移后的拋物線滿足:①過原點.②拋物線與x正半軸的另一個交點為Q.其頂點為P.且∠OPQ=90°,并寫出拋物線的函數表達式, 查看更多

 

題目列表(包括答案和解析)

操作探究題:
(1)在平面直角坐標系x0y中,畫出函數y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過原點,②拋物線與x正半軸的另一個交點為Q,其頂點為P,且∠OPQ=90°;并寫出拋物線的函數表達式;
(3)在上述直角坐標系中,以O為圓心,OP為半徑畫圓,交兩坐標軸于A、B(A點在左邊)兩點,在拋物線(2)上是否存在一點M,使S△MOA:S△POB=2:1?若存在,求出M點的坐標;若不存在,說明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標系x0y中,畫出函數y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過原點,②拋物線與x正半軸的另一個交點為Q,其頂點為P,且∠OPQ=90°;并寫出拋物線的函數表達式;
(3)在上述直角坐標系中,以O為圓心,OP為半徑畫圓,交x軸于A、B(A點在左邊)兩點,在拋物線(2)上是否存在一點M,使S△MOA:S△POB=2:1?若存在,求出M點的坐標;若不存在,說明理由.
(4)在(3)的條件下,是否存這樣的直線過A點且與拋物線只有一個交點?若存在,直接寫出其解析式.若不存在,說明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標系x0y中,畫出函數y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過原點,②拋物線與x正半軸的另一個交點為Q,其頂點為P,且∠OPQ=90°;并寫出拋物線的函數表達式;
(3)在上述直角坐標系中,以O為圓心,OP為半徑畫圓,交x軸于A、B(A點在左邊)兩點,在拋物線(2)上是否存在一點M,使S△MOA:S△POB=2:1?若存在,求出M點的坐標;若不存在,說明理由.
(4)在(3)的條件下,是否存這樣的直線過A點且與拋物線只有一個交點?若存在,直接寫出其解析式.若不存在,說明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標系x0y中,畫出函數y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過原點,②拋物線與x正半軸的另一個交點為Q,其頂點為P,且∠OPQ=90°;并寫出拋物線的函數表達式;
(3)在上述直角坐標系中,以O為圓心,OP為半徑畫圓,交x軸于A、B(A點在左邊)兩點,在拋物線(2)上是否存在一點M,使S△MOA:S△POB=2:1?若存在,求出M點的坐標;若不存在,說明理由.
(4)在(3)的條件下,是否存這樣的直線過A點且與拋物線只有一個交點?若存在,直接寫出其解析式.若不存在,說明理由.

查看答案和解析>>

(2013•咸寧模擬)操作探究題:
(1)在平面直角坐標系x0y中,畫出函數y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過原點,②拋物線與x正半軸的另一個交點為Q,其頂點為P,且∠OPQ=90°;并寫出拋物線的函數表達式;
(3)在上述直角坐標系中,以O為圓心,OP為半徑畫圓,交x軸于A、B(A點在左邊)兩點,在拋物線(2)上是否存在一點M,使S△MOA:S△POB=2:1?若存在,求出M點的坐標;若不存在,說明理由.
(4)在(3)的條件下,是否存這樣的直線過A點且與拋物線只有一個交點?若存在,直接寫出其解析式.若不存在,說明理由.

查看答案和解析>>


同步練習冊答案