22.光明中學七年級1班同學積極響應(yīng)“陽光體育工程 的號召.利用課外活動時間積極參加體育鍛煉.每位同學從長跑.籃球.鉛球.立定跳遠中選一項進行訓練.訓練前后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.項目選擇情況統(tǒng)計圖 訓練后籃球定時定點投籃測試進球數(shù)統(tǒng)計表 查看更多

 

題目列表(包括答案和解析)

(本題12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐標系中,使AB的中點位于坐標原點O (如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).

【小題1】(1) 當點B在第一象限,縱坐標是時,求點B的橫坐標;
【小題2】(2) 如果拋物線的對稱軸經(jīng)過點C,請你探究:
①當,,時,A,B兩點是否都在這條拋物線上?并說明理由;
②設(shè),是否存在這樣的m的值,使A,B兩點不可能同時在這條拋物線上?若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

(本題12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐標系中,使AB的中點位于坐標原點O (如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).

【小題1】(1) 當點B在第一象限,縱坐標是時,求點B的橫坐標;
【小題2】(2) 如果拋物線的對稱軸經(jīng)過點C,請你探究:
①當,時,A,B兩點是否都在這條拋物線上?并說明理由;
②設(shè),是否存在這樣的m的值,使A,B兩點不可能同時在這條拋物線上?若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

(本題12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐標系中,使AB的中點位于坐標原點O (如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).

1.(1) 當點B在第一象限,縱坐標是時,求點B的橫坐標;

2.(2) 如果拋物線的對稱軸經(jīng)過點C,請你探究:

①當,,時,A,B兩點是否都在這條拋物線上?并說明理由;

②設(shè) ,是否存在這樣的m的值,使A,B兩點不可能同時在這條拋物線上?若存在,直接寫出m的值;若不存在,請說明理由.

 

查看答案和解析>>

(本題12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐標系中,使AB的中點位于坐標原點O (如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).

1.(1) 當點B在第一象限,縱坐標是時,求點B的橫坐標;

2.(2) 如果拋物線的對稱軸經(jīng)過點C,請你探究:

①當,時,A,B兩點是否都在這條拋物線上?并說明理由;

②設(shè) ,是否存在這樣的m的值,使AB兩點不可能同時在這條拋物線上?若存在,直接寫出m的值;若不存在,請說明理由.

 

查看答案和解析>>

(本題12分)如圖8,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足為E、F.
(1)求證:△ABE≌△ADF;
(2)若∠BAE=∠EAF,求證:AE=BE;
(3)若對角線BD與AE、AF交于點M、N,且BM=MN(如圖9).
求證:∠EAF=2∠BAE.

查看答案和解析>>

 

一、選擇題(本題共10小題,每小題4分,共40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

A

A

D

B

A

C

B

二、填空題(本題共6小題,每小題5分,共30分)

11.             12.            13.

14.           15.              16.

三、解答題(本題有8小題,共80分)

17.(本題8分)

(1)原式

(2)解:得:,

代入①得:

18.(本題8分)

(1)證明:,,

(2)答案不惟一,如:,等.

19.(本題8分)

解:(1)方法一:列表得

 

A

B

C

D

A

 

(A,B)

(A,C)

(A,D)

B

(B,A)

 

(B,C)

(B,D)

C

(C,A)

(C,B)

 

(C,D)

D

(D,A)

(D,B)

(D,C)

 

方法二:畫樹狀圖

(2)獲獎勵的概率:

20.(本題8分)

(1)

(2),

21.(本題10分)

解:(1)的切線,,

,

(2),

(3),,

,

22.(本題12分)

解:(1);40;

(2)人均進球數(shù)

(3)設(shè)參加訓練前的人均進球數(shù)為個,由題意得:

,解得:

答:參加訓練前的人均進球數(shù)為4個.

23.(本題12分)

(1)

(2)由題意得:,

,(m).

(3),

設(shè)長為,則,解得:(m),即(m).

同理,解得(m),

24.(本題14分)

解:(1)直線的解析式為:

(2)方法一,,,

,

是等邊三角形,,

方法二,如圖1,過分別作軸于,軸于

可求得,

,

當點與點重合時,

,

,

(3)①當時,見圖2.

設(shè)于點,

重疊部分為直角梯形,

,

,

,

,

的增大而增大,

時,

②當時,見圖3.

設(shè)于點,

于點,于點,

重疊部分為五邊形

方法一,作,,

,

方法二,由題意可得,,,

再計算

,

,時,有最大值,

③當時,,即重合,

設(shè)于點,于點,重疊部

分為等腰梯形,見圖4.

綜上所述:當時,;

時,;

時,

,

的最大值是

 


同步練習冊答案