聯(lián)立以上各式得: 查看更多

 

題目列表(包括答案和解析)

.如圖所示,質(zhì)量為m的物體,在水平力F的作用下,沿傾角為α的粗糙斜面向上做勻速運(yùn)動(dòng),斜面的動(dòng)摩擦因數(shù)為μ,試求水平力的大。

圖4-1-15

【解析】:對(duì)物體受力分析并建立坐標(biāo)系,如圖所示:

由題意可得

Fcosαmgsinαf=0

NmgcosαFsinα=0

fμN(yùn)

以上各式聯(lián)立解得Fmg.

 

查看答案和解析>>

.如圖所示,質(zhì)量為m的物體,在水平力F的作用下,沿傾角為α的粗糙斜面向上做勻速運(yùn)動(dòng),斜面的動(dòng)摩擦因數(shù)為μ,試求水平力的大。

圖4-1-15

【解析】:對(duì)物體受力分析并建立坐標(biāo)系,如圖所示:

由題意可得

Fcosαmgsinαf=0

NmgcosαFsinα=0

fμN(yùn)

以上各式聯(lián)立解得Fmg.

 

查看答案和解析>>

第三部分 運(yùn)動(dòng)學(xué)

第一講 基本知識(shí)介紹

一. 基本概念

1.  質(zhì)點(diǎn)

2.  參照物

3.  參照系——固連于參照物上的坐標(biāo)系(解題時(shí)要記住所選的是參照系,而不僅是一個(gè)點(diǎn))

4.絕對(duì)運(yùn)動(dòng),相對(duì)運(yùn)動(dòng),牽連運(yùn)動(dòng):v=v+v 

二.運(yùn)動(dòng)的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對(duì)t 求導(dǎo)數(shù)

5.以上是運(yùn)動(dòng)學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對(duì)t的導(dǎo)數(shù)叫“急動(dòng)度”。)

6.由于以上三個(gè)量均為矢量,所以在運(yùn)算中用分量表示一般比較好

三.等加速運(yùn)動(dòng)

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時(shí),不會(huì)有危險(xiǎn)?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習(xí)題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個(gè)方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)

1. 我們講過的圓周運(yùn)動(dòng)是平動(dòng)而不是轉(zhuǎn)動(dòng) 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

4.  同一剛體上兩點(diǎn)的相對(duì)速度和相對(duì)加速度 

兩點(diǎn)的相對(duì)距離不變,相對(duì)運(yùn)動(dòng)軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點(diǎn)速度分別V,VB  ,VC      

求G的速度。

五.課后習(xí)題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時(shí)間T木筏劃到路線上標(biāo)有符號(hào)處。河水速度恒定U用作圖法找到在2T,3T,4T時(shí)刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關(guān)速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺(tái)上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時(shí),A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動(dòng)速度。

(vA

(2)拋體運(yùn)動(dòng)問題的一般處理方法

  1. 平拋運(yùn)動(dòng)
  2. 斜拋運(yùn)動(dòng)
  3. 常見的處理方法

(1)將斜上拋運(yùn)動(dòng)分解為水平方向的勻速直線運(yùn)動(dòng)和豎直方向的豎直上拋運(yùn)動(dòng)

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動(dòng)學(xué)公式解題

(3)將斜拋運(yùn)動(dòng)分解為沿初速度方向的斜向上的勻速直線運(yùn)動(dòng)和自由落體運(yùn)動(dòng)兩個(gè)分運(yùn)動(dòng),用矢量合成法則求解

例2:在擲鉛球時(shí),鉛球出手時(shí)距地面的高度為h,若出手時(shí)的速度為V0,求以何角度擲球時(shí),水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?

(α=、 x=

第二講 運(yùn)動(dòng)的合成與分解、相對(duì)運(yùn)動(dòng)

(一)知識(shí)點(diǎn)點(diǎn)撥

  1. 力的獨(dú)立性原理:各分力作用互不影響,單獨(dú)起作用。
  2. 運(yùn)動(dòng)的獨(dú)立性原理:分運(yùn)動(dòng)之間互不影響,彼此之間滿足自己的運(yùn)動(dòng)規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運(yùn)動(dòng)的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動(dòng)參考系,靜參考系

相對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于動(dòng)參考系的運(yùn)動(dòng)

絕對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動(dòng)

牽連運(yùn)動(dòng):動(dòng)參考系相對(duì)于靜參考系的運(yùn)動(dòng)

(5)位移合成定理:SA對(duì)地=SA對(duì)B+SB對(duì)地

速度合成定理:V絕對(duì)=V相對(duì)+V牽連

加速度合成定理:a絕對(duì)=a相對(duì)+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測(cè)得雨滴的徑跡與豎直方向成21。角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對(duì)于地的運(yùn)動(dòng)。

提示:矢量關(guān)系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動(dòng)扶梯,為什么他可以根據(jù)測(cè)得的數(shù)據(jù)來計(jì)算自動(dòng)扶梯的臺(tái)階數(shù)?

提示:V人對(duì)梯=n1/t1

      V梯對(duì)地=n/t2

      V人對(duì)地=n/t3

V人對(duì)地= V人對(duì)梯+ V梯對(duì)地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對(duì)岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對(duì)岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時(shí),不至于被沖進(jìn)瀑布中,船對(duì)水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習(xí)

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時(shí),司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對(duì)地面是豎直下落的)

2、模型飛機(jī)以相對(duì)空氣v=39km/h的速度繞一個(gè)邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時(shí)間?

3.圖為從兩列蒸汽機(jī)車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

4、細(xì)桿AB長L ,兩端分別約束在x 、 y軸上運(yùn)動(dòng),(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動(dòng)軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對(duì)桿方位角θ的函數(shù)。

(四)同步練習(xí)提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習(xí)一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動(dòng)。但鑒于桿子的實(shí)際運(yùn)動(dòng)情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對(duì)A的轉(zhuǎn)動(dòng)線速度為:v轉(zhuǎn) + vAsinθ=  。

P點(diǎn)的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

第六部分 振動(dòng)和波

第一講 基本知識(shí)介紹

《振動(dòng)和波》的競(jìng)賽考綱和高考要求有很大的不同,必須做一些相對(duì)詳細(xì)的補(bǔ)充。

一、簡(jiǎn)諧運(yùn)動(dòng)

1、簡(jiǎn)諧運(yùn)動(dòng)定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點(diǎn),均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡(jiǎn)諧運(yùn)動(dòng)的方程

回避高等數(shù)學(xué)工具,我們可以將簡(jiǎn)諧運(yùn)動(dòng)看成勻速圓周運(yùn)動(dòng)在某一條直線上的投影運(yùn)動(dòng)(以下均看在x方向的投影),圓周運(yùn)動(dòng)的半徑即為簡(jiǎn)諧運(yùn)動(dòng)的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對(duì)于一個(gè)給定的勻速圓周運(yùn)動(dòng),m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡(jiǎn)諧運(yùn)動(dòng)的定義式①。所以,x方向的位移、速度、加速度就是簡(jiǎn)諧運(yùn)動(dòng)的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運(yùn)動(dòng)學(xué)參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡(jiǎn)諧運(yùn)動(dòng)的合成

a、同方向、同頻率振動(dòng)合成。兩個(gè)振動(dòng)x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動(dòng)x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動(dòng)合成。當(dāng)質(zhì)點(diǎn)同時(shí)參與兩個(gè)垂直的振動(dòng)x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時(shí),這兩個(gè)振動(dòng)方程事實(shí)上已經(jīng)構(gòu)成了質(zhì)點(diǎn)在二維空間運(yùn)動(dòng)的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運(yùn)動(dòng)仍為簡(jiǎn)諧運(yùn)動(dòng);

當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運(yùn)動(dòng)不再是簡(jiǎn)諧運(yùn)動(dòng);

當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡(jiǎn)諧運(yùn)動(dòng)。

c、同方向、同振幅、頻率相近的振動(dòng)合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運(yùn)動(dòng)x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運(yùn)動(dòng)是振動(dòng),但不是簡(jiǎn)諧運(yùn)動(dòng),稱為角頻率為的“拍”現(xiàn)象。

4、簡(jiǎn)諧運(yùn)動(dòng)的周期

由②式得:ω=  ,而圓周運(yùn)動(dòng)的角速度和簡(jiǎn)諧運(yùn)動(dòng)的角頻率是一致的,所以

T = 2π                                                      

5、簡(jiǎn)諧運(yùn)動(dòng)的能量

一個(gè)做簡(jiǎn)諧運(yùn)動(dòng)的振子的能量由動(dòng)能和勢(shì)能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢(shì)能是由(回復(fù)力系數(shù))k和(相對(duì)平衡位置位移)x決定的一個(gè)抽象的概念,而不是具體地指重力勢(shì)能或彈性勢(shì)能。當(dāng)我們計(jì)量了振子的抽象勢(shì)能后,其它的具體勢(shì)能不能再做重復(fù)計(jì)量。

6、阻尼振動(dòng)、受迫振動(dòng)和共振

和高考要求基本相同。

二、機(jī)械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機(jī)械波的描述

a、波動(dòng)圖象。和振動(dòng)圖象的聯(lián)系

b、波動(dòng)方程

如果一列簡(jiǎn)諧波沿x方向傳播,振源的振動(dòng)方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個(gè)振動(dòng)質(zhì)點(diǎn)的振動(dòng)方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個(gè)方程展示的是一個(gè)復(fù)變函數(shù)。對(duì)任意一個(gè)時(shí)刻t ,都有一個(gè)y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個(gè)瞬時(shí)波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動(dòng)方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時(shí),能獨(dú)立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時(shí),在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動(dòng)加強(qiáng)的區(qū)域和振動(dòng)削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個(gè)波源,P表示空間任意一點(diǎn)。

當(dāng)振源的振動(dòng)方向相同時(shí),令振源S1的振動(dòng)方程為y1 = A1cosωt ,振源S1的振動(dòng)方程為y2 = A2cosωt ,則在空間P點(diǎn)(距S1為r1 ,距S2為r2),兩振源引起的分振動(dòng)分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點(diǎn)便出現(xiàn)兩個(gè)頻率相同、初相不同的振動(dòng)疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(shí)(k = 0,±1,±2,…),P點(diǎn)振動(dòng)加強(qiáng),振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(shí)(k = 0,±1,±2,…),P點(diǎn)振動(dòng)削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識(shí)點(diǎn)和高考要求相同。

5、多普勒效應(yīng)

當(dāng)波源或者接受者相對(duì)與波的傳播介質(zhì)運(yùn)動(dòng)時(shí),接收者會(huì)發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對(duì)介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對(duì)介質(zhì)運(yùn)動(dòng)(如圖3所示)

設(shè)接收者以速度v1正對(duì)靜止的波源運(yùn)動(dòng)。

如果接收者靜止在A點(diǎn),他單位時(shí)間接收的波的個(gè)數(shù)為f ,

當(dāng)他迎著波源運(yùn)動(dòng)時(shí),設(shè)其在單位時(shí)間到達(dá)B點(diǎn),則= v1 ,、

在從A運(yùn)動(dòng)到B的過程中,接收者事實(shí)上“提前”多接收到了n個(gè)波

n = 

顯然,在單位時(shí)間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運(yùn)動(dòng),只要將上式中的v1代入負(fù)值即可。如果v1的方向不是正對(duì)S ,只要將v1出正對(duì)的分量即可。

b、只有波源相對(duì)介質(zhì)運(yùn)動(dòng)(如圖4所示)

設(shè)波源以速度v2正對(duì)靜止的接收者運(yùn)動(dòng)。

如果波源S不動(dòng),在單位時(shí)間內(nèi),接收者在A點(diǎn)應(yīng)接收f個(gè)波,故S到A的距離:= fλ 

在單位時(shí)間內(nèi),S運(yùn)動(dòng)至S′,即= v2 。由于波源的運(yùn)動(dòng),事實(shí)造成了S到A的f個(gè)波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個(gè)波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。

c、當(dāng)接收者和波源均相對(duì)傳播介質(zhì)運(yùn)動(dòng)

當(dāng)接收者正對(duì)波源以速度v1(相對(duì)介質(zhì)速度)運(yùn)動(dòng),波源也正對(duì)接收者以速度v2(相對(duì)介質(zhì)速度)運(yùn)動(dòng),我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡(jiǎn)諧運(yùn)動(dòng)的證明與周期計(jì)算

物理情形:如圖5所示,將一粗細(xì)均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個(gè)初始的擾動(dòng)后,開始在管中振動(dòng)。忽略管壁對(duì)汞的阻力,試證明汞柱做簡(jiǎn)諧運(yùn)動(dòng),并求其周期。

模型分析:對(duì)簡(jiǎn)諧運(yùn)動(dòng)的證明,只要以汞柱為對(duì)象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動(dòng)方向上的合力(而非整體合力)。當(dāng)簡(jiǎn)諧運(yùn)動(dòng)被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時(shí)位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時(shí)的回復(fù)力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡(jiǎn)諧運(yùn)動(dòng)。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學(xué)生活動(dòng):如圖6所示,兩個(gè)相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動(dòng),在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動(dòng)摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時(shí),重心不在兩滾輪的正中央。試證明木板做簡(jiǎn)諧運(yùn)動(dòng),并求木板運(yùn)動(dòng)的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運(yùn)動(dòng)周期為2π 。

鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點(diǎn)懸掛在一光滑水平軸上,整個(gè)框架可繞轉(zhuǎn)軸轉(zhuǎn)動(dòng)。桿AB是一導(dǎo)軌,一電動(dòng)松鼠可在導(dǎo)軌上運(yùn)動(dòng),F(xiàn)觀察到松鼠正在導(dǎo)軌上運(yùn)動(dòng),而框架卻靜止不動(dòng),試討論松鼠的運(yùn)動(dòng)是一種什么樣的運(yùn)動(dòng)。

解說:由于框架靜止不動(dòng),松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點(diǎn)為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個(gè)一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點(diǎn)為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個(gè)力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點(diǎn)為參考點(diǎn),x就是松鼠的瞬時(shí)位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對(duì)于這個(gè)系統(tǒng)而言,k是固定不變的。

顯然這就是簡(jiǎn)諧運(yùn)動(dòng)的定義式。

答案:松鼠做簡(jiǎn)諧運(yùn)動(dòng)。

評(píng)說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進(jìn)一步的定量運(yùn)算也是有必要的。譬如,我們可以求出松鼠的運(yùn)動(dòng)周期為:T = 2π = 2π = 2.64s 。

二、典型的簡(jiǎn)諧運(yùn)動(dòng)

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個(gè)質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

第二部分  牛頓運(yùn)動(dòng)定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時(shí)效(同增同減)

c、無條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個(gè)環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中(      

A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)

B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)

解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個(gè)問題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時(shí)性”問題相對(duì)較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對(duì)灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。

解說:當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。

解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來反推)。

知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動(dòng)力學(xué)問題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡(jiǎn)化,使過程的物理意義更加明晰。

對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個(gè)長為L的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。

第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡(jiǎn)也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動(dòng),結(jié)論不變。

若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會(huì);(2)沒有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無相對(duì)滑動(dòng),水平推力F應(yīng)為多少?

解說:

此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無相對(duì)運(yùn)動(dòng)?如果沒有,說明理由;如果有,求出這個(gè)F′的值。

解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時(shí),沒有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。

(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對(duì)滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對(duì)斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動(dòng))思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。

解說:這是一個(gè)比較特殊的“連接體問題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動(dòng)過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時(shí)間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡(jiǎn)單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對(duì)棒的加速度a是沿棒向上的,故動(dòng)力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對(duì)位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。

例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>


同步練習(xí)冊(cè)答案