18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標系,△ABC各頂點的坐標為:A(-5,4)、B(-1,1)、C(-5,1).
①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
②寫出A′點的坐標.

查看答案和解析>>

25.(本小題滿分14分)

如圖13,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-1),ΔABC的面積為。

(1)求該二次函數(shù)的關(guān)系式;

(2)過y軸上的一點M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點,求m的取值范圍;

(3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ABCD為直角梯形?若存在,求出點D的坐標;若不存在,請說明理由。

查看答案和解析>>

(本小題滿分5分)計算 : 

 

查看答案和解析>>

(本小題滿分12分)如圖,在平面直角坐標系中,直線軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.

(1)求點的坐標,并在圖1中的上找一點,使到點與點的距離之和最;

(2)若△周長的最小值為,求拋物線的解析式及頂點的坐標;

(3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點重合),過點軸于點,設移動的時間為秒,試把△的面積表示成時間的函數(shù),當為何值時,有最大值,并求出最大值.

 

查看答案和解析>>

(本小題滿分12分)

某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w內(nèi)(元)(利潤 = 銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2 元的附加費,設月利潤為w(元)(利潤 = 銷售額-成本-附加費).

1.(1)當= 1000時,=        元/件,w內(nèi) =         元;

2.(2)分別求出w內(nèi),wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

3.(3)當x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;

4.(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?

參考公式:拋物線的頂點坐標是

 

查看答案和解析>>

說明:

1.如果考生的解法與本解法不同,可參照本評分標準制定相應評分細則.

2.當考生的解答在某一步出現(xiàn)錯誤,影響了后繼部分時,如果這一步以后的解答未改變這道題的內(nèi)容和難度,可視影響程度決定后面部分的給分,但不得超過后面部分應給分數(shù)的一半;如果這一步以后的解答有較嚴重的錯誤,就不給分.

3.為閱卷方便,本解答中的推算步驟寫得較為詳細,但允許考生在解答過程中,合理省略非關(guān)鍵性的推算步驟.

4.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

一、選擇題(本題滿分21分,共有7道小題,每小題3分)

題號

1

2

3

4

5

6

7

答案

D

B

A

C

D

A

C

二、填空題(本題滿分21分,共有7道小題,每小題3分)

題號

8

9

10

11

答案

1

題號

12

13

14

答案

16

(8,3)

4

32

 

三、作圖題(本題滿分6分)

15.⑴ 正確作出圖形,并做答.                     …………………………3′

⑵ 132 .                                     …………………………6′

四、解答題(本題滿分72分,共有9道小題)

16.(本小題滿分6分)

    ①×3,得 6x+3y=15.   ③

    ②+③,得 7x=21,

     x=3.                       …………………………3′

    把x=3代入①,得2×3+y=5,

                       y=-1.

    ∴原方程組的解是                 ………………………………6′

    17.(本小題滿分6分)

    解:⑴ 正確補全頻數(shù)分布直方圖;            ………………………………2′

    ⑵ 樣本的中位數(shù)在155~160cm的范圍內(nèi); ………………………………4′

    ⑶ 八年級.                            ………………………………6′

    18.(本小題滿分6分)

    解:⑴  (元);  …………………………4′

    ⑵  ∵11.875元>10元,  

            ∴選擇轉(zhuǎn)轉(zhuǎn)盤.                       ……………………………6′

    (如果學生選擇直接獲得購物券,只要回答合理即可同樣得分)

    19.(本小題滿分6分)

    解:過C作AB的垂線,交直線AB于點D,得到Rt△ACD與Rt△BCD.

    設BD=x海里,

    在Rt△BCD中,tan∠CBD=,

    ∴CD=x ?tan63.5°.

    在Rt△ACD中,AD=AB+BD=(60+x)海里,tan∠A=,

    ∴CD=( 60+x ) ?tan21.3°.                 ……………………………4′

    ∴x?tan63.5°=(60+x)?tan21.3°,即

    解得,x=15.

    答:輪船繼續(xù)向東航行15海里,距離小島C最近. …………………………6′

    20.(本小題滿分8分)

    解:⑴ 設生產(chǎn)A種飲料x瓶,根據(jù)題意得:

     

     

     

    解這個不等式組,得20≤x≤40.

    因為其中正整數(shù)解共有21個,

    所以符合題意的生產(chǎn)方案有21種.       ……………………………4′

    ⑵ 根據(jù)題意,得 y=2.6x+2.8(100-x).

     整理,得 y=-0.2x+280.       ……………………………6′

    ∵k=-0.2<0,

    ∴y隨x的增大而減。

    ∴當x=40時成本總額最低.                …………………………8′

    21.(本小題滿分8分)

    證明:⑴ 由折疊可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.

    ∵四邊形ABCD是平行四邊形,

    ∴∠B=∠D,AB=CD,∠C=∠BAD.………2′

    ∴∠B=∠D′,AB=AD′,

    ∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.

    ∴∠1=∠3.

    ∴△ABE ≌△A D′F.   ……………4′

    ⑵ 四邊形AECF是菱形.

    由折疊可知:AE=EC,∠4=∠5.

    ∵四邊形ABCD是平行四邊形,∴AD∥BC.

    ∴∠5=∠6.∴∠4=∠6.∴AF=AE.                 

    ∵AE=EC,  ∴AF=EC.

    又∵AF∥EC,                 

    ∴四邊形AECF是平行四邊形.

    ∵AF=AE,

    ∴四邊形AECF是菱形.                 ……………………………8′

    22.(本小題滿分10分)

    解:⑴ y=(x-50)∙ w

    =(x-50) ∙ (-2x+240)

    =-2x2+340x-12000,

    ∴y與x的關(guān)系式為:y=-2x2+340x-12000.   ……………………3′

    ⑵ y=-2x2+340x-12000

    =-2 (x-85) 2+2450,

    ∴當x=85時,y的值最大.                 ………………………6′

    ⑶ 當y=2250時,可得方程 -2 (x-85 )2 +2450=2250.

    解這個方程,得  x1=75,x2=95.            ………………………8′

    根據(jù)題意,x2=95不合題意應舍去.

    ∴當銷售單價為75元時,可獲得銷售利潤2250元. …………………10′                

    23.(本小題滿分10分)

    解:⑵ ∵AP=AD,△ABP和△ABD的高相等,

    ∴SABPSABD

    又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

    ∴SCDPSCDA

    ∴SPBC =S四邊形ABCD-SABP-SCDP

    =S四邊形ABCDSABDSCDA

    =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

    SDBCSABC

    ∴SPBCSDBCSABC                         ……………………………4′

    ⑶ SPBCSDBCSABC ;              ……………………………5′

    ⑷ SPBCSDBCSABC ;

    ∵AP=AD,△ABP和△ABD的高相等,

    ∴SABPSABD

    又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

    ∴SCDPSCDA

    ∴SPBC =S四邊形ABCD-SABP-SCDP

    =S四邊形ABCDSABDSCDA

    =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

    SDBCSABC

    ∴SPBCSDBCSABC .             ……………………………8′

    問題解決: SPBCSDBCSABC .      ……………………………10′

    24.(本小題滿分12分)

    解:⑴ 根據(jù)題意:AP=t cm,BQ=t cm.

    △ABC中,AB=BC=3cm,∠B=60°,

    ∴BP=(3-t ) cm.

    △PBQ中,BP=3-t,BQ=t,

    若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°.

    當∠BQP=90°時,BQ=BP.

    即t=(3-t ),

    t=1 (秒).

          當∠BPQ=90°時,BP=BQ.

    3-t=t,

    t=2 (秒).

    答:當t=1秒或t=2秒時,△PBQ是直角三角形.   …………………4′

    ⑵ 過P作PM⊥BC于M .

    Rt△BPM中,sin∠B=,

    ∴PM=PB?sin∠B=(3-t ).

    ∴S△PBQBQ?PM=? t ?(3-t ).

    ∴y=S△ABC-S△PBQ

    ×32×? t ?(3-t )

           =. 

    ∴y與t的關(guān)系式為: y=.   …………………6′

    假設存在某一時刻t,使得四邊形APQC的面積是△ABC面積的

    則S四邊形APQCSABC

    ××32×

    ∴t 2-3 t+3=0.

    ∵(-3) 2-4×1×3<0,

    ∴方程無解.

    ∴無論t取何值,四邊形APQC的面積都不可能是△ABC面積的.……8′

    ⑶ 在Rt△PQM中,

    MQ=

    MQ 2+PM 2=PQ 2

    ∴x2=[(1-t ) ]2+[(3-t ) ]2

            ==3t2-9t+9.         ……………………………10′

    ∴t2-3t=

    ∵y=,

    ∴y=.                  

    ∴y與x的關(guān)系式為:y=.       ……………………………12′

     


    同步練習冊答案