時間(天)1351036-日銷售量m(件)9490847624- 查看更多

 

題目列表(包括答案和解析)

某公司生產的一種時令商品每件成本為20元,經(jīng)過市場調研發(fā)現(xiàn),這種商品在未來20天內的日銷售量m(件)與時間t(天)的關系如下表:
         時間t(天)  10  36 
 日銷售量m(件) 94 90  84   76  24
未來20天內每天的價格y(元/件)與時間t(天)的函數(shù)關系式為y=
1
4
t+25(1≤t≤20,且t為整數(shù)).
(1)認真分析上表的數(shù)據(jù),用所學過的函數(shù)知識,確定滿足這些數(shù)據(jù)的m(件)與t(天)之間的函數(shù)關系式;
(2)設未來20天日銷售利潤為p(元),請求出p(元)與t(天)之間的關系式,并預測未來20天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)當該公司預計日銷售利潤不低于560元時,請借助(2)小題的函數(shù)圖象,求出t的取值范圍?

查看答案和解析>>

某公司生產的某種時令商品每件成本為20元,經(jīng)過在本地市場調研發(fā)現(xiàn),這種商品在未來40天內的日銷售量m(件)與時間t(天)的關系如下表:
時間t(天) 1 3 6 10 36
日銷售量m(件) 94 90 84 76 24
未來40天內,前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關系式為y1=
1
4
t+25
(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關系式為y2=-
1
2
t+40
(21≤t≤40且t為整數(shù)).下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的關系式;
(2)請預測本地市場在未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在第30天,該公司在外地市場的銷量比本地市場的銷量增加a%還多30件,由于運輸?shù)仍,該商品每件成本比本地增?.2a%少5元,在銷售價格相同的情況下當日兩地利潤持平,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.
(參考數(shù)據(jù):
29
≈5.39
,
30
≈5.48
,
31
≈5.57
32
≈5.66
,
33
≈5.74

查看答案和解析>>

某公司生產的一種時令商品每件成本為20元,經(jīng)過市場調研發(fā)現(xiàn),這種商品在未來20天內的日銷售量m(件)與時間t(天)的關系如下表:
時間t(天) 1 3 6 10 36
日銷售量m(件) 94 90 84 76 24
未來20天內每天的價格y(元/件)與時間t(天)的函數(shù)關系式為y =
1
4
t+25
(1≤t≤20且t為整數(shù)).下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的關系式;
(2)設未來20天日銷售利潤為p (元),請寫出p (元) 與t(天)之間的關系式;并預測未來20天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)若該公司預計日銷售利潤不低于560元,請借助(2)小題中的函數(shù)圖象確定時間的取值范圍,持續(xù)了多少天?
(4)在實際銷售的20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<5)給希望工程.公司通過銷售記錄發(fā)現(xiàn),每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

某公司生產的某種時令商品每件成本為20元,經(jīng)過市場調研發(fā)現(xiàn),這種商品在未來40天內的日銷售量m(件)與時間t(天)的關系如圖.未來40天內,前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關系式為y1=
14
t+25
(1≤t≤20,且t為整數(shù)),后20天每天的價格30元/件 (21≤t≤40,且t為整數(shù)).下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的關系式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工精英家教網(wǎng)程.公司通過銷售記錄發(fā)現(xiàn),前20天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

紅星公司生產的某種時令商品每件成本為20元,經(jīng)過市場調研發(fā)現(xiàn),這種商品在未來40天內的日銷售量m(件)與時間t(天)的關系如下表:
時間t(天) 1 3 6 10 36
日銷售量m(件) 94 90 84 76 24
未來40天內,前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關系式為y1=
1
4
t+25(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關系式為y2=-
1
2
t+40(21≤t≤40且t為整數(shù)).
下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的關系式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

 

說明:若有本參考答案沒有提及的解法,只要解答正確,請參照給分.

 

第I卷(選擇題    共24分)

 

一、選擇題(本大題共8題,每題3分,共24分)

1.B  2.C  3.C  4.B  5.D  6.C  7.A  8.B

 

第II卷(非選擇題    共126分)

 

二、填空題:(每題3分,共30分)

9.;    10.;    11.;      12.;    13.抽樣調查

14.范;    15.;       16.60;        17.;   18.8

說明:第11題若答案是不給分;第17題若答案是給2分.

三、解答題:(本大題共8題,共96分)

19.(1)解:原式

說明:第一步中每對一個運算給1分,第二步2分.

(2)解:原式

 

20.解:(1)15    5.5      6     1.8

(2)①平均數(shù)中位數(shù)眾數(shù)

②平均數(shù)不能較好地反映乙隊游客的年齡特征.

因為乙隊游客年齡中含有兩個極端值,受兩個極端值的影響,導致乙隊游客年齡方差較大,平均數(shù)高于大部分成員的年齡.

說明:第(1)題中平均數(shù)、中位數(shù)、眾數(shù)各1分,方差2分,第(2)題中學生說理只要說出受“極端值影響”的大意即可給分.

21.解:(1)的數(shù)量關系是

理由如下:

,

(SAS).

(2)線段是線段的比例中項.

理由如下:,

即線段是線段的比例中項.

說明:若第(1)、(2)題中結論已證出,但在證明前未作判斷的不扣分.

22.解:(1)不同意小明的說法.

因為摸出白球的概率是,摸出紅球的概率是,

因此摸出白球和摸出紅球不是等可能的.

(2)樹狀圖如圖(列表略)

(兩個球都是白球)

(3)(法一)設應添加個紅球,

由題意得

解得(經(jīng)檢驗是原方程的解)

答:應添加3個紅球.

(法二)添加后(摸出紅球)

添加后(摸出白球)

添加后球的總個數(shù)

應添加個紅球.

23.解:(1)設該校采購了頂小帳篷,頂大帳篷.

根據(jù)題意,得

解這個方程組,得

(2)設甲型卡車安排了輛,則乙型卡車安排了輛.

根據(jù)題意,得

解這個不等式組,得

車輛數(shù)為正整數(shù),或16或17.

或4或3.

答:(1)該校采購了100頂小帳篷,200頂大帳篷.

(2)安排方案有:①甲型卡車15輛,乙型卡車5輛;②甲型卡車16輛,乙型卡車4輛;③甲型卡車17輛,乙型卡車3輛.

24.解:(1)所在直線與小圓相切,

理由如下:過圓心,垂足為

是小圓的切線,經(jīng)過圓心,

,又平分

所在直線是小圓的切線.

(2)

理由如下:連接

切小圓于點切小圓于點,

中,

(HL)  

,

(3),

圓環(huán)的面積

, 

說明:若第(1)、(2)題中結論已證出,但在證明前未作判斷的不扣分.

25.解:(1)將代入一次函數(shù)中,有

 

經(jīng)檢驗,其它點的坐標均適合以上解析式,

故所求函數(shù)解析式為

(2)設前20天日銷售利潤為元,后20天日銷售利潤為元.

,

時,有最大值578(元).

且對稱軸為,函數(shù)上隨的增大而減小.

時,有最大值為(元).

,故第14天時,銷售利潤最大,為578元.

(3)

對稱軸為

,時,的增大而增大.

,

26.解:(1)在矩形中,

,

(2)(法一),易得

梯形面積

,.(負值舍去,經(jīng)檢驗是原方程的解)

(法二)由(1)得

,易得,

,

,

.(負值舍去,經(jīng)檢驗是原方程的解)

(3)(法一)與(1)、(2)同理得

直線過點

.(負值舍去,經(jīng)檢驗是原方程的解)

(法二)連接于點,則

,

是等邊三角形,

(4)(法一)在中,,,

有:,

,

,又

,

的函數(shù)關系式是,

(法二)在中,

,有

,

,又

,

的函數(shù)關系式是,

說明:寫出各得1分.

 


同步練習冊答案