(3)由題意得,圓M的圓心是點(0,2),半徑為2.當m=4時,直線AK的方程為x=4,此時,直線AK與圓M相離. 查看更多

 

題目列表(包括答案和解析)

在復平面內(nèi), 是原點,向量對應的復數(shù)是=2+i。

(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應的復數(shù);

(Ⅱ)復數(shù)對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

【解析】第一問中利用復數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

 

查看答案和解析>>

設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為

所以

(2)  不妨設.由題意得.又因為,所以

于是,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設,

得定義知,

又因為

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

綜上,對于所有的的最大值為

 

查看答案和解析>>

已知平面α截一球面得圓M,過圓心M且與α成
π
3
角的平面β截該球面得圓N若圓M、圓N面積分別為4π、13π,則球面面積為(  )

查看答案和解析>>

若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

【解析】第一問中,利用定義,判定由題意得,由,所以

第二問中, 由題意得方程有兩實根

所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。

解(I)由題意得,由,所以     (6分)

(II)由題意得方程有兩實根

所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點。

 

查看答案和解析>>

已知圓M經(jīng)過三點A(2,2),B(2,4),C(3,3),從圓M外一點P(a,b)向該圓引切線PT,T為切點,且|PT|=|PO|(O為坐標原點).
(1)求圓M的方程;
(2)試判斷點P是否總在某一定直線上,若是,求出該直線方程;若不是,請說明理由.

查看答案和解析>>


同步練習冊答案