1.如果...那么(sM)∩(sN)等于 查看更多

 

題目列表(包括答案和解析)

如果S={1,2,3,4,5},M={1,3,4},N={2,4,5},那么(?SM)∩(?SN)=( 。

查看答案和解析>>

把下列各題中的“=”全部改成“<”,結(jié)論仍然成立的是( 。
A、如果a=b,c=d,那么a-c=b-d
B、如果a=b,c=d,那么ac=bd
C、如果a=b,c=d,且cd≠0,那么
a
c
=
b
d
D、如果a=b,那么a3=b3

查看答案和解析>>

在△ABC中,∠A,∠B,∠C所對的邊長分別為a,b,c,如果acosB=bcosA,那么△ABC一定是(  )
A、銳角三角形B、鈍角三角形C、直角三角形D、等腰三角形

查看答案和解析>>

設(shè)
e1
,
e2
是相互垂直的單位向量,并且向量
a
=3
e1
+2
e2
,
b
=x
e1
+3
e2
,如果
a
b
,那么實數(shù)x等于( 。
A、-2
B、2
C、-
9
2
D、
9
2

查看答案和解析>>

某地區(qū)原森林木材存量為a,且每年增長率為25%,因生產(chǎn)建設(shè)的需要每年年底要砍伐的木材量為b,設(shè)an為n年后該地區(qū)森林木材存量
(1)計算a1,a2,a3的值;
(2)由(1)的結(jié)果,推測an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材存量應(yīng)不少于
7
9
a,如果b=
19
72
a,那么該地區(qū)今后會發(fā)生水土流失嗎?若會,需要經(jīng)過幾年?(取lg2≈0.30)

查看答案和解析>>

1―6、AABCCD   7―12、DBBDCA

13、(lg2,+∞)   14、0, 15、-1

16、(文)-10,(理)(2-i)/3

19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

    ∴BC長度即為B點到平面A1C1CA的距離

    ∵BC=2  ∴點B到平面A1C1CA的距離為2……………………4分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

    ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

    ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點

    ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

    即二面角B―A1D―A的大小為                   ………………10分

   

    (1)同解法一……………………4分

    (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

    AC⊥CB  D、E分別為C1C、B1C1的中點

    建立如圖所示的坐標(biāo)系得

    C(0,0,0) B(2,0,0)  A(0,2,0)

    C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

    D(0,0,1)  E(1,0,2)………………6分

      設(shè)平面A1BD的法向量為n

           …………8分

    平面ACC1A1­的法向量為m=(1,0,0)  …………9分

    即二面角B―A1D―A的大小為………………10分

    20.(文) 解:將各項指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

    (1)由于“至少有兩項指標(biāo)不合格”,與“至多1項指標(biāo)不合格”對立,故這個電子

    元件不能出廠的概率為  ………………6分

    (2)直到五項指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項檢驗中恰有1項

    檢驗不合格. 故直到五項指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

    ……………………12分

    (理)  解:(Ⅰ)

     

    1

    2

    3

    4

    5

    6

    7

    8

    9

    P

    (Ⅱ)

    21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點;若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點,所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-)且k≠±時,直線與雙曲線交于二點,反之亦然.

    (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因為圓過原點,以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

    22.解:(1)  ………………2分

        由已知條件得:    ………………4分

           (2)………………5分

        ………………6分

        令    ………………7分

        ∴函數(shù)的單調(diào)遞增區(qū)間為

        當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

        綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

        函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

       (3)由(1)得: 

        …………10分

        令………………11分

       

        即:……………………14分

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    數(shù)學(xué)2參考答案(2007年10月17日

    1―6、AABCCD   7―12、DBBDCA

    13、(lg2,+∞)   14、0, 15、-1

    16、(文)-10,(理)(2-i)/3

    19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

        ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

        ∴BC長度即為B點到平面A1C1CA的距離

        ∵BC=2  ∴點B到平面A1C1CA的距離為2……………………4分

    (2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

        ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

        ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

        平面A1C1CA中,C1C=CA=2,D為C1C的中點

        ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

        即二面角B―A1D―A的大小為                   ………………10分

       

    (1)同解法一……………………4分

    (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

    AC⊥CB  D、E分別為C1C、B1C1的中點

    建立如圖所示的坐標(biāo)系得

    C(0,0,0) B(2,0,0)  A(0,2,0)

    C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

    D(0,0,1)  E(1,0,2)………………6分

      設(shè)平面A1BD的法向量為n

           …………8分

    平面ACC1A1­的法向量為m=(1,0,0)  …………9分

    即二面角B―A1D―A的大小為………………10分

    20.(文) 解:將各項指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

    (1)由于“至少有兩項指標(biāo)不合格”,與“至多1項指標(biāo)不合格”對立,故這個電子

    元件不能出廠的概率為  ………………6分

    (2)直到五項指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項檢驗中恰有1項

    檢驗不合格. 故直到五項指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

    ……………………12分

    (理)  解:(Ⅰ)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    P

    (Ⅱ)

    21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點;若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點,所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時,直線與雙曲線交于二點,反之亦然.

    (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因為圓過原點,以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

    22.解:(1)  ………………2分

        由已知條件得:    ………………4分

           (2)………………5分

        ………………6分

        令    ………………7分

        ∴函數(shù)的單調(diào)遞增區(qū)間為

        當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

        綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

        函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

       (3)由(1)得: 

        …………10分

        令………………11分

       

        即:……………………14分

     


    同步練習(xí)冊答案