題目列表(包括答案和解析)
(本小題滿分12分)某市教育局責(zé)成基礎(chǔ)教育處調(diào)查本市學(xué)生的身高情況,基礎(chǔ)教育處隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示:
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從各班身高最高的5名同學(xué)中各取一人,求甲班同學(xué)身高不低于乙班同學(xué)的概率.
(本小題滿分12分)某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?sub>列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表僅供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:其中)
(本小題滿分12分)
某科考試中,從甲、乙兩個(gè)班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩班成績的莖葉圖如圖5所示,成績不小于90分為及格.
甲 | 乙 | |
257 368 58 68 | 7 8 9 10 | 89 678 1235 1 |
(Ⅰ)甲班10名同學(xué)成績的標(biāo)準(zhǔn)差 乙班10名同學(xué)成績的標(biāo)準(zhǔn)差(填“>”,“<”);
(Ⅱ)從兩班10名同學(xué)中各抽取一人,已知有人及格,求乙班同學(xué)不及格的概率;
(Ⅲ)從甲班10人中取一人,乙班10人中取兩人,三人中及格人數(shù)記為X,
|
(本小題滿分12分)
某科考試中,從甲、乙兩個(gè)班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩班成績的莖葉圖如圖3所示,成績不小于90分為及格.
(Ⅰ)甲班10名同學(xué)成績標(biāo)準(zhǔn)差 乙班10名同學(xué)成績標(biāo)準(zhǔn)差(填“>”,“<”);
(Ⅱ)從甲班4名及格同學(xué)中抽取兩人,從乙班2名80分以下的同學(xué)中取一人,求三人平均分不及格的概率.
甲 | 乙 | |
257 368 24 68 | 7 8 9 10 | 89 678 1235 1 |
(本小題滿分12分)某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?sub>列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表僅供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:其中)
一.選擇題
1.B 2.B 3. A 4.A 5.C 6. D 7.B 8.D 9.B 10.A 11.C 12.C
二.填空題
13.(1, )∪( ,2) 14. 15. 16. ②③④
三.解答題
17.解:(1)兩學(xué)生成績績的莖葉圖如圖所示……………4分
(2)將甲、乙兩學(xué)生的成績從小到大排列為:
甲: 512 522 528 534 536 538 541 549 554 556
乙:515 521 527 531 532 536 543 548 558 559
從以上排列可知甲學(xué)生成績的中位數(shù)為……6分
乙學(xué)生成績的中位數(shù)為 …………8分
甲學(xué)生成績的平均數(shù)為:
……………10分
乙學(xué)生成績的平均數(shù)為:
……………12分
18.解:(1)∵
∴,
∴,∴ ∵ ∈(0,π) ∴ ……4分
(2)∵ ∴,即 ① …………6分
又 ∴,即 ② …………8分
由①②可得,∴ ………………………………………10分
又∴, ……………………………………12分
高三數(shù)學(xué)試題答案(文科)(共4頁)第1頁
19.(I)設(shè)是的中點(diǎn),連結(jié),則四邊形為正方形,……………2分
.故,,,,即.
………………………4分
又,平面,…………………………6分
(II)證明:DC的中點(diǎn)即為E點(diǎn), ………………………………………………8分
連D1E,BE ∴四邊形ABED是平行四邊形,
∴ADBE,又ADA1D1 A1D1 ∴四邊形A1D1EB是平行四邊形 D1E//A1B ,
∵D1E平面A1BD ∴D1E//平面A1BD!12分
20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則
得a=3 , b=-2, 所以 f(x)=3x2-2x. ……………………………………3分
又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分
(2)由(1)得知==,……8分
故Tn===(1-)………10分
因此,要使(1-)<()成立的m,必須且僅須滿足
≤,即m≥10,所以滿足要求的最小正整數(shù)m為10. ………………………12分
|