(2)設(shè).Tn是數(shù)列的前n項和.求使得對所有都成立的最小正整數(shù)m. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且,求{bn}的通項公式;
(3)若m=1時,設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

設(shè)數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且,求{bn}的通項公式;
(3)若m=1時,設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

設(shè)數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且,求{bn}的通項公式;
(3)若m=1時,設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

數(shù)列{an}各項均為正數(shù),sn為其前n項的和,對于n∈N*,總有an,sn,an2成等差數(shù)列.
(1)數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{
1
an
}的前n項的和為Tn,數(shù)列{Tn}的前n項的和為Rn,求證:當(dāng)n≥2時,Rn-1=n(Tn-1)
(3)設(shè)An為數(shù)列{
2an-1
2an
}的前n項積,是否存在實數(shù)a,使得不等式An
2an+1
<a對一切n∈N+都成立?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項,設(shè)Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1
;
(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項和為Tn,是否存在整數(shù)P、Q,使得對任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請說明理由.

查看答案和解析>>

一.選擇題

1.B    2.B  3. A   4.A   5.C   6. D  7.B   8.D   9.B  10.A  11.C   12.C

二.填空題

13.(1, )∪( ,2)       14.      15.      16. ②③④

三.解答題

17.解:(1)兩學(xué)生成績績的莖葉圖如圖所示……………4分    

(2)將甲、乙兩學(xué)生的成績從小到大排列為:

甲: 512  522  528  534  536  538  541  549   554  556   

乙:515  521  527  531  532  536   543  548   558   559   

從以上排列可知甲學(xué)生成績的中位數(shù)為……6分  

 乙學(xué)生成績的中位數(shù)為       …………8分

甲學(xué)生成績的平均數(shù)為:

……………10分   

乙學(xué)生成績的平均數(shù)為:

……………12分     

18.解:(1)∵

 ∴,

 ∴,∴ ∈(0,π)  ∴ ……4分

(2)∵,即                    ①   …………6分

 又,即    ②   …………8分

 由①②可得,∴     ………………………………………10分

 又,     ……………………………………12分

高三數(shù)學(xué)試題答案(文科)(共4頁)第1頁

19.(I)設(shè)的中點,連結(jié),則四邊形為正方形,……………2分

.故,,,即

………………………4分

,平面,…………………………6分

(II)證明:DC的中點即為E點,    ………………………………………………8分

連D1E,BE   ∴四邊形ABED是平行四邊形,

∴ADBE,又ADA1D1    A1D1    ∴四邊形A1D1EB是平行四邊形  D1E//A1B ,

∵D1E平面A1BD   ∴D1E//平面A1BD!12分

20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則

得a=3 ,  b=-2, 所以  f(x)=3x2-2x.  ……………………………………3分

又因為點均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-=6n-5.

當(dāng)n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分

(2)由(1)得知,……8分

故Tn(1-)………10分

因此,要使(1-)<)成立的m,必須且僅須滿足

,即m≥10,所以滿足要求的最小正整數(shù)m為10.  ………………………12分

<input id="lmnem"><em id="lmnem"><dl id="lmnem"></dl></em></input>
        <span id="lmnem"><dfn id="lmnem"></dfn></span>

        3x2+x-8<0,

        3x2-x-2<0,

         

        由-1≤a≤1的一切a的值,都有g(shù)(x)<0              -<x<1 …………6分

        高三數(shù)學(xué)試題答案(文科)(共4頁)第2頁

        (2)       a=時,, 函數(shù)y=f(x)的圖像與直線y=3只有一個公共點,

        即函數(shù)F(x)= 的圖像與x軸只有一個公共點。………8分

        知,

        若m=0,則 F(x)=0顯然只有一個根;

        若m≠0,則F(x)在x=-點取得極大值,在x=點取得極小值.

        因此必須滿足F(-)<0或F()>0,

        -<m<0或0<m<

        綜上可得 -<m <.                                ………………13分

        22.解:(1)設(shè)橢圓方程為,則.

        ∴橢圓方程為                   ……………………4分

        (2)∵直線l平行于OM,且在y軸上的截距為m,     又KOM=,

        ,聯(lián)立方程有

        ,    ∵直線l與橢圓交于A.B兩個不同點,

                …………8分

        (3)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可

        設(shè),

           由

         

        高三數(shù)學(xué)試題答案(文科)(共4頁)第3頁

        故直線MA,MB與x軸始終圍成一個等腰三角形. ……………………13分

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

        高三數(shù)學(xué)試題答案(文科)(共4頁)第4頁

         


        同步練習(xí)冊答案