(2)當(dāng)n≥2時(shí).an=f()=. 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)=
ax2+bx+1
x+c
(a>0)為奇函數(shù),且|f(x)|min=2
2
,數(shù)列{an}與{bn}滿足如下關(guān)系:a1=2,an+1=
f(an)-an
2
,bn=
an-1
an+1

(1)求f(x)的解析表達(dá)式;
(2)證明:當(dāng)n∈N+時(shí),有bn(
1
3
)n

查看答案和解析>>

設(shè)f(x)=x2,g(x)=8x,數(shù)列{an}(n∈N*)滿足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,記bn=
78
(n+1)(an-1)
.(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)當(dāng)n為何值時(shí),bn取最大值,并求此最大值;(Ⅲ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

設(shè)f(x)=x2,g(x)=8x,數(shù)列{an}(n∈N*)滿足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,記數(shù)學(xué)公式.(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)當(dāng)n為何值時(shí),bn取最大值,并求此最大值;(Ⅲ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

設(shè)f(x)=
ax2+bx+1
x+c
(a>0)為奇函數(shù),且|f(x)|min=2
2
,數(shù)列{an}與{bn}滿足如下關(guān)系:a1=2,an+1=
f(an)-an
2
,bn=
an-1
an+1

(1)求f(x)的解析表達(dá)式;
(2)證明:當(dāng)n∈N+時(shí),有bn(
1
3
)n

查看答案和解析>>

設(shè)f(x)=x2,g(x)=8x,數(shù)列{an}(n∈N*)滿足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,記bn=
7
8
(n+1)(an-1)
.(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)當(dāng)n為何值時(shí),bn取最大值,并求此最大值;(Ⅲ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>


同步練習(xí)冊(cè)答案