由m>0.所以m+4k>0. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問(wèn),

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問(wèn)中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

第二問(wèn)中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費(fèi)為10.6元,則通話時(shí)間m∈________.

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),;

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

已知中,,.設(shè),記.

(1)   求的解析式及定義域;

(2)設(shè),是否存在實(shí)數(shù),使函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用(1)如圖,在中,由,,

可得,

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">m+1=3/2,n=1/2

2當(dāng)m<0,不滿足的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;

因而存在實(shí)數(shù)m=1/2的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案