題目列表(包括答案和解析)
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)< 時(shí),求實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,
得
第三問
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
.……………2分
由題意,有. 所以,
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點(diǎn).
(1)求圓錐體的體積;
(2)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得,故
從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
在等比數(shù)列中,,;
(1)求數(shù)列的通項(xiàng)公式; (2)求數(shù)列的前項(xiàng)和
【解析】第一問中利用等比數(shù)列中,,兩項(xiàng)確定通項(xiàng)公式即可
第二問中,在第一問的基礎(chǔ)上,然后求和。
解:(1)由題意得到:
……6分
(2) ……①
…… ②
①-②得到
|
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com