已知橢圓C: 的中心關(guān)于直線 的對(duì)稱點(diǎn)落在直線 (其中)上.且橢圓 C 的離心率為 .(Ⅰ)求橢圓 C 的方程, 查看更多

 

題目列表(包括答案和解析)

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過(guò)點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求的取值范圍.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線y=x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過(guò)點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求的取值范圍.

查看答案和解析>>

已知橢圓W的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
6
3
,兩條準(zhǔn)線間的距離為6.橢圓W的左焦點(diǎn)為F,過(guò)左準(zhǔn)線與x軸的交點(diǎn)M任作一條斜率不為零的直線l與橢圓W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為C.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證:
CF
FB
(λ∈R);
(Ⅲ)求△MBC面積S的最大值.

查看答案和解析>>

已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)與焦距相等,直線x+y-1=0與E相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),且
AC
=3
CB

(Ⅰ)求橢圓E的方程;
(Ⅱ)如果橢圓E上存在兩點(diǎn)M,N關(guān)于直線l:y=4x+m對(duì)稱,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知橢圓W的中心在原點(diǎn),焦點(diǎn)在X軸上,離心率為
6
3
,橢圓短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的面積為2
2
,橢圓W的左焦點(diǎn)為F,過(guò)x軸的一點(diǎn)M(-3,0)任作一條斜率不為零的直線L與橢圓W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于X軸的對(duì)稱點(diǎn)為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R);
(3)求△MBC面積S的最大值.

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A B

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)        (14)        (15)        (16)―1

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ)將一顆骰子先后拋擲2次,此問(wèn)題中含有36個(gè)等可能的基本事件.    2分

記“兩數(shù)之和為7”為事件A,則事件A中含有6個(gè)基本事件(將事件列出更好),

∴ P(A)

記“兩數(shù)之和是4的倍數(shù)”為事件B,則事件B中含有9個(gè)基本事件,

∴ P(B)

    ∵ 事件A與事件B是互斥事件,∴ 所求概率為 .         8分

    (Ⅱ)記“點(diǎn)(x,y)在圓  的內(nèi)部”事件C,則事件C中共含有11個(gè)基本事件,∴ P(C)=.                                                   12分

(18)(本小題滿分12分)

解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

又∵M(jìn)、N分別是AA1、CC1的中點(diǎn),

∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

(Ⅱ)∵M(jìn)N∥AC,∴A C ∥ 平面MNQ.

QN是△B1CC1的中位線,∴B1C∥QN.∴B1C∥平面MNQ.

∴平面AB1 C ∥ 平面MNQ.                                               8分

(Ⅲ)由題意,△MNP的面積

Q點(diǎn)到平面ACC1A1的距離H顯然等于△A1B1C1的高的一半,也就是等于BP的一半,

.∴三棱錐 Q ― MNP 的體積.              12分

(19)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

,.解得

又 ∵ 0, ∴ .                                 12分

(20)(本小題滿分12分)

解:(Ⅰ)對(duì)求導(dǎo)得

依題意有 ,且 .∴ ,且

解得 . ∴ .                             6分

(Ⅱ)由上問(wèn)知,令,得

顯然,當(dāng)  或  時(shí),;當(dāng)  時(shí),

.∴ 函數(shù)上是單調(diào)遞增函數(shù),在上是單調(diào)遞減函數(shù).

當(dāng)時(shí)取極大值,極大值是

當(dāng)時(shí)取極小值,極小值是.   12分

(21)(本小題滿分12分)

解:(Ⅰ)∵

設(shè)O關(guān)于直線

對(duì)稱點(diǎn)為的橫坐標(biāo)為

又易知直線  解得線段的中點(diǎn)坐標(biāo)

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

設(shè)點(diǎn),,則

由韋達(dá)定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)

的橫坐標(biāo)

,代入,并整理得 .   10分

再將韋達(dá)定理的結(jié)果代入,并整理可得

∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ , ∴

顯然 , ∴ .                                       5分

,,……,,

將這個(gè)等式相加,得 ,∴ .          7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 

 

 


同步練習(xí)冊(cè)答案