6.表示平面.m.n表示直線.給出下列命題: 查看更多

 

題目列表(包括答案和解析)

若m,n表示直線,α表示平面,給出下列命題:

;②m∥n;③m⊥n;④n⊥α.

其中正確命題的個數(shù)為

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

設(shè)l,m,n表示三條不同的直線,α,β,γ表示三個不同的平面,給出下列四個命題:
①若l⊥α,m⊥α,則l∥m;   
②若m?α,m∥n,則n∥α;
③若m?β,n是l在β內(nèi)的射影,m⊥l,則m⊥n;
④若α⊥γ,β⊥γ,則α∥β.    
其中正確的命題是
①③
①③

查看答案和解析>>

設(shè)l,m,n表示三條不同的直線,α,β,γ表示三個不同的平面,給出下列四個命題:
①若l⊥α,m⊥α,則l∥m;
②若m?β,n是l在β內(nèi)的射影,m⊥l,則m⊥n;
③若m?α,m∥n,則n∥α;
④若α⊥γ,β⊥γ,則α∥β.    
其中正確的命題是
①②
①②

查看答案和解析>>

用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α;
②若m∥α,α⊥β,則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α;
②若m∥α,α⊥β,則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β.
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

Ⅰ選擇題

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非選擇題

13.    14.    15.  16. (2) (3)

17.  解:   (4分)

      (1)增區(qū)間  ,  減區(qū)間   (8分)

      (2)   (12分)

18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設(shè)其中一枚骰子朝下的面上的數(shù)字為,另一枚骰子朝下的面上的數(shù)字為y,則   的取值如下表:

 

x+y    y

x          

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

從表中可得:

⑴ 

………………8分

的所有可能取值為2,3,4,5,6,7,8,10

的分布列為:

2

3

4

5

6

7

8

10

P

E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分

 

19.解:(1)在△CBD中作CO⊥BD.  易證:

CO⊥平面PBD       ∴∠CPO即為所求,

    (4分)

(2)在△PBC中作EF∥BC交PC于F,

又AD∥BC   ∴ AD∥EF   ∴ DF⊥PC

又DP=DC    ∴ F為PC的中點   ∴E為PB的中點,  ∴   (8分)

(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分體積     (12分)

20. 解:(1)

       令

       ∴ 增區(qū)間為(0, 1)    減區(qū)間為     (4分)

(2)函數(shù)圖象如圖所示:

  ∴ 解為:

  ① a<0,   0個;

   ② a=0,  a>,    1個;

   ③a=,  2個 ;   ④ 0<a<,    3個.     (8分)

(3)

  (12分)

21.解:(1)由

根據(jù)待定系數(shù)法,可得.得,

故:  。4分)

(2)若為奇數(shù),以下證:

由于,即.

①     當(dāng)為偶數(shù)時

②     當(dāng)為奇數(shù)時

                   =

                    

成立.  。12分)

22. 解:⑴

    設(shè)M()且

 化簡:  (1分)

  ∴    MN為∠F1 MF2的平分線

  ∴

  ∴

     

   (6分)

  ⑵ 代入拋物線

 (9分)

   ∴

①當(dāng)時,不等式成立

②當(dāng)

的取值范圍為:    (14分)

 


同步練習(xí)冊答案