題目列表(包括答案和解析)
y2 |
4 |
π |
4 |
|
b-2 |
a-1 |
1 |
2 |
“如果一條直線與一個平面垂直,則稱這條直線與這個平面構成一組正交線面對;如果兩個平面互相垂直,則稱這兩個平面構成一組正交平面對.”在正方體的12條棱和6個表面中,能構成正交線面對和正交平面對的組數分別是( )
A.和 | B.和 | C.和 | D.和 |
如果方程表示一個圓,
(1)求的取值范圍;
(2)當m=0時的圓與直線相交,求直線的傾斜角的取值范圍.
Ⅰ選擇題
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非選擇題
13. 14. 15. 16. (2) (3)
17. 解: (4分)
(1)增區(qū)間 , 減區(qū)間 (8分)
(2) (12分)
18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設其中一枚骰子朝下的面上的數字為,另一枚骰子朝下的面上的數字為y,則 的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
從表中可得:
⑴
………………8分
⑵的所有可能取值為2,3,4,5,6,7,8,10
的分布列為:
2
3
4
5
6
7
8
10
P
E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分
19.解:(1)在△CBD中作CO⊥BD. 易證:
CO⊥平面PBD ∴∠CPO即為所求,
∴
∴ (4分)
(2)在△PBC中作EF∥BC交PC于F,
又AD∥BC ∴ AD∥EF ∴ DF⊥PC
又DP=DC ∴ F為PC的中點 ∴E為PB的中點, ∴ (8分)
(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2
∴
∴ 所求部分體積 (12分)
20. 解:(1)
令
∴ 增區(qū)間為(0, 1) 減區(qū)間為 (4分)
(2)函數圖象如圖所示:
∴ 解為:
、 a<0, 0個;
② a=0, a>, 1個;
③a=, 2個 ; ④ 0<a<, 3個. (8分)
(3)
∴ (12分)
21.解:(1)由
根據待定系數法,可得.得,
故: 。4分)
(2)若為奇數,以下證:
=
由于,即.
① 當為偶數時
② 當為奇數時
=
故成立. (12分)
22. 解:⑴
設M()且 ∴
化簡: (1分)
∴ MN為∠F1 MF2的平分線
∴
∴
又
(6分)
⑵ 代入拋物線
且
(9分)
又 ∴
①當時,不等式成立
②當
∴的取值范圍為: (14分)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com