設(shè)函數(shù)f的定義域分別為Df.Dg.且DfDg.若對(duì)于任意xDf.都有g(shù)為f(x)在Dg上的一個(gè)延拓函數(shù).設(shè)f (x)=2x在R上的一個(gè)延拓函數(shù).且g= . 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x),g(x)的定義域分別為M,N,且M是N真子集,若對(duì)任意的x∈M,都有g(shù)(x)=f(x),則稱g(x)是f(x)的“拓展函數(shù)”.已知函數(shù)f(x)=log2x,若g(x)是f(x)的“拓展函數(shù)”,且g(x)是偶函數(shù),則符合條件的一個(gè)g(x)的解析式是________.

查看答案和解析>>

設(shè)函數(shù)f(x)g(x)的定義域分別為M,N,且MN真子集,若對(duì)任意的xM,都有g(x)f(x),則稱g(x)f(x)拓展函數(shù).已知函數(shù)f(x)log2x,若g(x)f(x)拓展函數(shù),且g(x)是偶函數(shù),則符合條件的一個(gè)g(x)的解析式是________

 

查看答案和解析>>

設(shè)函數(shù)f(x),g(x)的定義域分別為M,N,且M是N真子集,若對(duì)任意的x∈M,都有g(shù)(x)=f(x),則稱g(x)是f(x)的“拓展函數(shù)”.已知函數(shù)f(x)=log2x,若g(x)是f(x)的“拓展函數(shù)”,且g(x)是偶函數(shù),則符合條件的一個(gè)g(x)的解析式是________.

查看答案和解析>>

設(shè)函數(shù)f(x),g(x)的定義域分別為Df,Dg,且DfDg.若對(duì)于任意xDf,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在Dg上的一個(gè)延拓函數(shù).設(shè)f(x)=2x(x≤0),g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是偶函數(shù),則g(x)=________.

查看答案和解析>>

設(shè)函數(shù)f(x),g(x)的定義域分別為Df,Dg,且DfDg.若對(duì)于任意xDf,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在Dg上的一個(gè)延拓函數(shù).設(shè)f(x)=2x(x≥0),g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是偶函數(shù),則g(x)=________.

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,共40分.

1.B         2.C         3.A         4.A       5.B       6.C      7.D     8.C

二、填空題:本大題共6小題,每小題5分,共30分.

9.0.3                 10.-1               11.4

12.24;81             13.1;45°          14.2 |x|

注:兩空的題目,第一個(gè)空2分,第二個(gè)空3分.

三、解答題:本大題共6小題,共80分.

15.(本小題滿分12分)

(Ⅰ)解:

∵函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過點(diǎn),

          2分  即                   4分

解得a=1,b=-.                                                         6分

(Ⅱ)解:

由(Ⅰ)得f(x)=sinx-cosx=2sin().                                   8分

∵0≤x≤π,              ∴-                               9分

當(dāng)x-,即x=時(shí),sin取得最大值1.                        11分

∴f(x)在[0,π]上的最大值為2,此時(shí)x=.                                   12分

16.(本小題滿分13分)

(Ⅰ)解:

記“甲投球命中”為事件A,“乙投球命中”為事件B,則A,B相互獨(dú)立,

且P(A)=,P(B)=.

那么兩人均沒有命中的概率P=P()=P()P()=.         -5分

(Ⅱ)解:

記“乙恰好比甲多命中1次”為事件C,“乙恰好投球命中1次且甲恰好投球命中0次”為事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”為事件C2,則C=C1+C2,C1,C2為互斥事件.

,                                             8分

?                                           11分

P(C)=P(C1)+P(C2)=.                                                        13分

17.(本小題滿分13分)

解法一:

連結(jié)BD.

∵ABCD-A1B1C1D1是正四棱柱,

∴B1B⊥平面ABCD,

∴BD是B1D在平面ABCD上的射影,

∵AC⊥BD,

根據(jù)三垂線定理得,AC⊥B1D.              5分

(Ⅱ)解:

設(shè)AC∩BD=F,連結(jié)EF.

∵DE⊥平面ABCD,且AC⊥BD,

根據(jù)三垂線定理得AC⊥FE,    又AC⊥FB,

∴∠EFB是二面角E-AC-B的平面角.                                       -9分

在Rt△EDF中,由DE=DF=,得∠EFD=45°.                                12分

∴∠EFB=180°-45°=135°,

即二面角E-AC-B的大小是135°.                                            13分

解法二:

∵ABCD-A1B1C1D1是正四棱柱,

    • <rt id="omwso"><kbd id="omwso"></kbd></rt>
        <rt id="omwso"></rt>

        如圖,以D為原點(diǎn),直線DA,DC,DD1分別為x軸,

        y軸,z軸,建立空間直角坐標(biāo)系.             1分

        D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

        B1(1,1,).                               3分

        (Ⅰ)證明:

        =(-1,1,0),  ,

        =0,

        ∴AC⊥B1D.                                                            6分

        (Ⅱ)解:

        連結(jié)BD,設(shè)AC∩BD=F,連結(jié)EF.

        ∵DE⊥平面ABCD,且AC⊥BD,

        ∴AC⊥FE,AC⊥FB,

        ∴∠EFB是二面角E-AC-B的平面角.                                         9分

        ∵底面ABCD是正方形     ∴F,

        ,                                      12分

        ∴二面角E-AC-B的大小是135°                                              13分

        18.(本小題滿分14分)

        (Ⅰ)解:

        ∵a1=3,an=-an1-2n+1(n≥2,且n∈N*),

        ∴a2=-a1-4+1=-6,                   2分   a3=-a2-6+1=1.               4分

        (Ⅱ)證明:

        ∴數(shù)列{an+n}是首項(xiàng)為a1+1=4,公比為-1的等比數(shù)列.                          7分

        ∴an+n=4?(-1)n1, 即an=4?(-1)n1-n,

        ∴{an}的通項(xiàng)公式為an=4?(-1)n1-n(n∈N*).                                   9分

        (Ⅲ)解:

        ∵{an}的通項(xiàng)公式an=4?(-1)n1-n(n∈N*),

        所以當(dāng)n是奇數(shù)時(shí),Sn=?12分

        當(dāng)n是偶數(shù)時(shí),Sn=?(n2+n).

        綜上,Sn=                                     14分

        19.(本小題滿分14分)

        (Ⅰ)解:

        依題意,直線l的斜率存在,設(shè)直線l的方程為y=kx+,

        將其代入x2=2y,消去y整理得x2-2kx-1=0.                                  2分

        設(shè)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),  則x1x2=-1.                       3分

        將拋物線的方程改寫為y=x2,求導(dǎo)得y′=x.

        所以過點(diǎn)A的切線l1的斜率是k1=x1,過點(diǎn)B的切線l2的斜率是k2=x2,

        因?yàn)閗1k2=x1x2=-1,所以l1⊥l2.                                              6分

        (Ⅱ)解:

        直線l1的方程為y-y1=k1(x-x1),即y-=x1(x-x1),

        同理,直線l2的方程為y-=x2(x-x2),

        聯(lián)立這兩個(gè)方程,消去y得=x2(x-x2)-x1(x-x1),

        整理得(x1-x2)=0,注意到x1≠x2,所以x=.                   10分

        此時(shí))y=.                    12分

        由(Ⅰ)知,x1+x2=2k,    所以x==k∈R,

        所以點(diǎn)M的軌跡方程是y=.                                              14分

        20.(本小題滿分14分)

        (Ⅰ)解:

        f(x)的導(dǎo)數(shù)f′(x)=9x2-4.

        令f′(x)>0,解得x>,或x<-;  令f′(x)<0,解得-<x<.

        從而f(x)的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.     3分

        (Ⅱ)解:

        由f(x)≤0,  得-a≥3x3-4x+1.                                                4分

        由(Ⅰ)得,函數(shù)y=3x3-4x+1在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

        從而當(dāng)x=-時(shí),函數(shù)y=3x3-4x+1取得最大值.                            6分

        因?yàn)閷?duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,

        故-a≥,即a≤-,

        從而a的最大值是-.                                                    8分

        (Ⅲ)解:

        當(dāng)x變化時(shí),f(x),f′(x)變化情況如下表:

        x

        f′(x)

        +

        0

        0

        +

        f(x)

        極大值a+

        極小值a

        ①由f(x)的單調(diào)性,當(dāng)極大值a+<0或極小值a>0時(shí),方程f(x)=0最多有一個(gè)實(shí)數(shù)根;

        ②當(dāng)a=-時(shí),解方程f(x)=0,得x=-,x=,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根;

        ③當(dāng)a=時(shí),解方程f(x)=0,得x=,x=-,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根.

        如果方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則解得

        a∈.                                                           12分

        事實(shí)上,當(dāng)a∈時(shí),

        ∵f(-2)=-15+a<-15+<0,且f(2),17+a>17->0,

        所以方程f(x)=0在內(nèi)各有一根.

        綜上,若方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則a的取值范圍是.         14分

         


        同步練習(xí)冊(cè)答案