20.已知數(shù)列是正項(xiàng)等比數(shù)列.滿足 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
已知數(shù)列是各項(xiàng)不為0的等差數(shù)列,為其前n
項(xiàng)和,且滿足, 令,數(shù)列
前n項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和;
(2) 是否存在正整數(shù),使得,,成等比數(shù)列?若存在,求出所有的 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列.設(shè),數(shù)列滿足以.

(1)求證:數(shù)列成等差數(shù)列;

(2)求數(shù)列的前n項(xiàng)和

(3)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(本小題滿分12分)

已知數(shù)列是各項(xiàng)不為0的等差數(shù)列,為其前n

項(xiàng)和,且滿足, 令,數(shù)列

前n項(xiàng)和為.

(1)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和

(2) 是否存在正整數(shù),使得,,成等比數(shù)列?若存在,求出所有的 的值;若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

(本小題滿分12分)

已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,設(shè),數(shù)列滿足

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

(本小題滿分12分)

已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,設(shè),數(shù)列滿足

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

C

C

A

C

B

B

二、填空題

13.        14.       15.      16.___-1__

三、解答題

17.解:1)

          =

2)

,而

,

18.解:(I)由題意:的取值為1,3,又

      

ξ

1

3

P

 

      

 

∴Eξ=1×+3×=.                       

   (II)當(dāng)S8=2時(shí),即前八秒出現(xiàn)“○”5次和“×”3次,又已知

       若第一、三秒出現(xiàn)“○”,則其余六秒可任意出現(xiàn)“○”3次;

       若第一、二秒出現(xiàn)“○”,第三秒出現(xiàn)“×”,則后五秒可任出現(xiàn)“○”3次.

       故此時(shí)的概率為

19.答案:(Ⅰ)解:根據(jù)求導(dǎo)法則有,

,

于是,列表如下:

2

0

極小值

故知內(nèi)是減函數(shù),在內(nèi)是增函數(shù),所以,在處取得極小值

(Ⅱ)證明:由知,的極小值

于是由上表知,對(duì)一切,恒有

從而當(dāng)時(shí),恒有,故內(nèi)單調(diào)增加.

所以當(dāng)時(shí),,即

故當(dāng)時(shí),恒有

20.(1)數(shù)列{an}的前n項(xiàng)和,

                                           

     

數(shù)列是正項(xiàng)等比數(shù)列,,      

公比,數(shù)列                  

(2)解法一:,

                               

,

當(dāng),又

故存在正整數(shù)M,使得對(duì)一切M的最小值為2

   (2)解法二:,

,        

,

函數(shù)

對(duì)于

故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2

21.答案:1)   

          

       2)由(1)知,雙曲線的方程可設(shè)為漸近線方程為

設(shè):,

而點(diǎn)p在雙曲線上,

所以:

所以雙曲線的方程為:

22.證明: ,

,從而有

綜上知:

 

23.解:如圖1):極坐標(biāo)系中,圓心C,直線:

轉(zhuǎn)化為直角坐標(biāo)系:如圖2),點(diǎn)

X

圖1

由點(diǎn)到直線的距離:

,即

 

 

0

 

<style id="9ca0k"><strong id="9ca0k"></strong></style>

      圖2

      24.證明:由已知平行四邊形ABCD為平行四邊形,,

      中,

      ,又BC=AD

      ,得證。


      同步練習(xí)冊(cè)答案