故概率p=.評(píng)述:本題主要考查對(duì)可能事件的概率計(jì)算.以及考生分析問(wèn)題解決問(wèn)題的能力.古典概率是學(xué)習(xí)概率與統(tǒng)計(jì)的起點(diǎn).而掌握古典概型的前提是能熟練地掌握排列組合的基本知識(shí). 查看更多

 

題目列表(包括答案和解析)

某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售。如果當(dāng)天賣(mài)不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ii)若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.

【解析】(Ⅰ)當(dāng)日需求量時(shí),利潤(rùn)=85;

當(dāng)日需求量時(shí),利潤(rùn)

關(guān)于的解析式為;

(Ⅱ)(i)這100天中有10天的日利潤(rùn)為55元,20天的日利潤(rùn)為65元,16天的日利潤(rùn)為75元,54天的日利潤(rùn)為85元,所以這100天的平均利潤(rùn)為

=76.4;

(ii)利潤(rùn)不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤(rùn)不少于75元的概率為

 

查看答案和解析>>

(本小題滿(mǎn)分12分)

有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪(hào)列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿(mǎn)分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿(mǎn)分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線(xiàn)CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>

零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿(mǎn)分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿(mǎn)分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線(xiàn)CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

(本小題滿(mǎn)分12分)

有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪(hào)列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿(mǎn)分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿(mǎn)分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線(xiàn)CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>

零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿(mǎn)分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿(mǎn)分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線(xiàn)CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>


同步練習(xí)冊(cè)答案