題目列表(包括答案和解析)
某同學參加北大、清華、科大三所學校的自主命題招生考試,其被錄取的概率分別為(各學校是否錄取他相互獨立,允許他可以被多個學校同時錄。.
(Ⅰ)求此同學沒有被任何學校錄取的概率;
(Ⅱ)求此同學至少被兩所學校錄取的概率.
【解析】本試題主要考查了獨立事件的概率乘法公式的運用,以及運用對立事件求解概率的方法的綜合運用。
過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
已知函數(shù)=.
(Ⅰ)當時,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,=,
當≤2時,由≥3得,解得≤1;
當2<<3時,≥3,無解;
當≥3時,由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當∈[1,2]時,==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
A、不可能事件的概率是0,必然事件的概率是1 | ||
B、某人射擊10次,擊中靶心8次,則他擊中靶心的概率是0.8 | ||
C、“直線y=k(x+1)過點(-1,0)”是必然事件 | ||
D、先后拋擲兩枚大小一樣的硬幣,兩枚都出現(xiàn)反面的概率是
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com