.評述:本題主要考查等可能事件的概率計算及分析和解決實際問題的能力. 查看更多

 

題目列表(包括答案和解析)

某同學參加北大、清華、科大三所學校的自主命題招生考試,其被錄取的概率分別為(各學校是否錄取他相互獨立,允許他可以被多個學校同時錄。.

(Ⅰ)求此同學沒有被任何學校錄取的概率;

(Ⅱ)求此同學至少被兩所學校錄取的概率.

【解析】本試題主要考查了獨立事件的概率乘法公式的運用,以及運用對立事件求解概率的方法的綜合運用。

 

查看答案和解析>>

過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

(I)試證明兩點的縱坐標之積為定值;

(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

 (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

 

查看答案和解析>>

已知函數(shù)=.

(Ⅰ)當時,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

【解析】(Ⅰ)當時,=,

≤2時,由≥3得,解得≤1;

當2<<3時,≥3,無解;

≥3時,由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

∈[1,2]時,==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>

下列說法不正確的是( 。
A、不可能事件的概率是0,必然事件的概率是1
B、某人射擊10次,擊中靶心8次,則他擊中靶心的概率是0.8
C、“直線y=k(x+1)過點(-1,0)”是必然事件
D、先后拋擲兩枚大小一樣的硬幣,兩枚都出現(xiàn)反面的概率是
1
3

查看答案和解析>>

下列說法正確的是(  )

查看答案和解析>>


同步練習冊答案