解:(1)設(shè)f(x)=ax2+bx+c.則f′(x)=2ax+b.又已知f′(x)=2x+2 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過(guò)點(diǎn)A(0,1),且在點(diǎn)處切線(xiàn)的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱(chēng)區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫(xiě)出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過(guò)點(diǎn)A(0,1),且在點(diǎn)處切線(xiàn)的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱(chēng)區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(。┳C明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫(xiě)出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過(guò)點(diǎn)A(0,1),且在點(diǎn)A處切線(xiàn)的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱(chēng)區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過(guò)點(diǎn)A(0,1),且在點(diǎn)處切線(xiàn)的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱(chēng)區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫(xiě)出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過(guò)點(diǎn)A(0,1),且在點(diǎn)處切線(xiàn)的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱(chēng)區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(。┳C明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫(xiě)出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案