題目列表(包括答案和解析)
=1,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C的值;
(2)組合數(shù)的兩個性質;
①=C. ②+C=C.
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
(3)已知組知數(shù)是正整數(shù),證明:當x∈Z,m是正整數(shù)時,∈Z
已知直三棱柱中, , , 是和的交點, 若.
(1)求的長; (2)求點到平面的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3
第二問中,利用面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 …………… 5分
(2)在面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD= … 8分
(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB
CHE為二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分
解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h(huán)) ……… 4分
·=0, h=3
(2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)
點A到平面ABC的距離為H=||=……… 8分
(3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小滿足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小為
(本小題滿分12分)
閱讀下面內容,思考后做兩道小題。
在一節(jié)數(shù)學課上,老師給出一道題,讓同學們先解,題目是這樣的:
已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。
題目給出后,同學們馬上投入緊張的解答中,結果很快出來了,大家解出的結果有很多個,下面是其中甲、乙兩個同學的解法:
甲同學的解法:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同學的解法是:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果課堂上老師讓你對甲、乙兩同學的解法給以評價,你如何評價?
(Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com