解:因?yàn)閣為復(fù)數(shù).argw=.所以設(shè)w=r(cos+isin). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱軸

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

若方程sinwx=1(w>0,0≤x≤2)至少有50個(gè)解,則w的最小值為
197
4
π
197
4
π

查看答案和解析>>

已知z、w、x為復(fù)數(shù),且x=(1+3i)•z,w=
z
2+i
且|w|=5
2

(1)若w為大于0的實(shí)數(shù),求復(fù)數(shù)x.
(2)若x為純虛數(shù),求復(fù)數(shù)w.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問,由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

中,滿足,邊上的一點(diǎn).

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

=,得,又,則為所求

第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

(1)當(dāng)時(shí),則= 

(2)當(dāng)時(shí),則=

第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">;

所以于是

從而

運(yùn)用三角函數(shù)求解。

(Ⅰ)解:設(shè)向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

(1)當(dāng)時(shí),則=;-2分

(2)當(dāng)時(shí),則=;--2分

(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

所以于是

從而---2

==

=…………………………………2

,,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時(shí),

 

查看答案和解析>>


同步練習(xí)冊(cè)答案