題目列表(包括答案和解析)
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)時(shí),求證:
;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點(diǎn)H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
已知直三棱柱中,
,
,
是
和
的交點(diǎn), 若
.
(1)求的長(zhǎng); (2)求點(diǎn)
到平面
的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問(wèn)中,利用ACCA
為正方形,
AC=3
第二問(wèn)中,利用面BBC
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
,第三問(wèn)中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交A
C于E, 易證ACC
A
為正方形,
AC=3
…………… 5分
(2)在面BBC
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
… 8分
(3) 易得AC面A
CB,
過(guò)E作EH
A
B于H, 連HC
,
則HC
A
B
C
HE為二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=
二面角C
-A
B-C的平面角的正弦大小為
……… 12分
解法二: (1)分別以直線CB、CC
、C
A為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
=(2, -
, -
),
=(0,
-3, -h(huán)) ……… 4分
·
=0,
h=3
(2)設(shè)平面ABC
得法向量
=(a, b, c),則可求得
=(3, 4, 0) (令a=3)
點(diǎn)A到平面A
BC
的距離為H=|
|=
……… 8分
(3) 設(shè)平面ABC的法向量為
=(x, y, z),則可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
滿足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小為
如圖,四棱柱中,
平面
,底面
是邊長(zhǎng)為
的正方形,側(cè)棱
.
(1)求三棱錐的體積;
(2)求直線與平面
所成角的正弦值;
�。ǎ常┤衾�上存在一點(diǎn)
,使得
,當(dāng)二面角
的大小為
時(shí),求實(shí)數(shù)
的值.
【解析】(1)在中,
.
(3’)
(2)以點(diǎn)D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則
(4’)
,設(shè)平面
的法向量為
,
由得
,
(5’)
則,
. (7’)
(3)
設(shè)平面的法向量為
,由
得
,
(10’)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com