題目列表(包括答案和解析)
設A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因為,,所以
(2),
因為,所以,
所以
當d=0時,取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設,,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹?shù)倪壿嬎季S能力
4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機變量的所有等可能取值為1,2…,n,若,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得
6.解析:因為只有一個零點,所以方程只有一個根,因此,所以
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調(diào)遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
學校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數(shù)的分布列和數(shù)學期望。
【解析】第一問中,由已知條件結合n此獨立重復試驗的概率公式可知,得
第二問中可能的取值為0,1,2,3 ,
,
從而得到分布列和期望值
解:(I)由已知條件得 ,即,則的值為。
(Ⅱ)可能的取值為0,1,2,3 ,
,
的分布列為:(1分)
0 |
1 |
2 |
3 |
|
所以
設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得.又因為,所以,
于是,,
所以,當,且時,取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且,因此,不妨設,
且。
由得定義知,,
又因為
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com