當=1時.的所有取值為.(3.4).即, 查看更多

 

題目列表(包括答案和解析)

已知P(-2,1),Q(3,2),一次函數y=-kx-2的圖象為直線l.

(1)當k=2時,直線PQ與l交于點M,求M分所成的比;

(2)當直線l與線段(含端點)有公共點時,求實數k的取值范圍.

查看答案和解析>>

(2012•上海)定義向量
OM
=(a,b)的“相伴函數”為f(x)=asinx+bcosx,函數f(x)=asinx+bcosx的“相伴向量”為
OM
=(a,b)(其中O為坐標原點).記平面內所有向量的“相伴函數”構成的集合為S.
(1)設g(x)=3sin(x+
π
2
)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點,向量
OM
的“相伴函數”f(x)在x=x0處取得最大值.當點M在圓C上運動時,求tan2x0的取值范圍.

查看答案和解析>>

若有窮數列是正整數),滿足
是正整數,且),就稱該數列為“對稱數列”。
(1)已知數列是項數為7的對稱數列,且成等差數列,,試寫出的每一項
(2)已知是項數為的對稱數列,且構成首項為50,公差為的等差數列,數列的前項和為,則當為何值時,取到最大值?最大值為多少?
(3)對于給定的正整數,試寫出所有項數不超過的對稱數列,使得成為數列中的連續(xù)項;當時,試求其中一個數列的前2008項和

查看答案和解析>>

若有窮數列是正整數),滿足是正整數,且),就稱該數列為“對稱數列”。

(1)已知數列是項數為7的對稱數列,且成等差數列,,試寫出的每一項

(2)已知是項數為的對稱數列,且構成首項為50,公差為的等差數列,數列的前項和為,則當為何值時,取到最大值?最大值為多少?

(3)對于給定的正整數,試寫出所有項數不超過的對稱數列,使得成為數列中的連續(xù)項;當時,試求其中一個數列的前2008項和

 

查看答案和解析>>

若有窮數列是正整數),滿足

是正整數,且),就稱該數列為“對稱數列”。

(1)已知數列是項數為7的對稱數列,且成等差數列,,試寫出的每一項

(2)已知是項數為的對稱數列,且構成首項為50,公差為的等差數列,數列的前項和為,則當為何值時,取到最大值?最大值為多少?

(3)對于給定的正整數,試寫出所有項數不超過的對稱數列,使得成為數列中的連續(xù)項;當時,試求其中一個數列的前2008項和

 

查看答案和解析>>


同步練習冊答案