(2)①當(dāng)0≤t≤6時.點P與點Q都在AB上運動.設(shè)PM與AD交于點G.QN與AD交于點F.則AQ=t,AF=,QF=t,Ap=t+2,AG=1+,PG=t+ 查看更多

 

題目列表(包括答案和解析)

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q精英家教網(wǎng)分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>


同步練習(xí)冊答案