在等腰梯形ABCD中.AB∥CD.DA=BC..AB=4cm.DC=2 cm.點P從點A出發(fā).沿A→D→C→B的方向以2 cm /s的速度向終點B運動.點Q從點B出發(fā).沿線段BA以cm /s的速度向終點 A運動. P.Q兩點同時出發(fā).當有一點到達時.另一點也隨之停止運動. 設運動時間為s.(1)求梯形ABCD的周長和面積, 查看更多

 

題目列表(包括答案和解析)

如圖,在等腰梯形ABCD中,AB=CD=DA=BC=a,試求該梯形的面積.

查看答案和解析>>

如圖,在等腰梯形ABCD中,AB∥DC,CE∥DA,已知AB=10,BC=6,CD=7,則△CEB的周長是_______.

查看答案和解析>>

如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達端點時,另一個動點也隨之停止運動.

(1)求AD的長;

(2)設CPx,問當x為何值時△PDQ的面積達到最大,并求出最大值;

(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運動,動點Q精英家教網同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達端點時,另一個動點也隨之停止運動.
(1)求AD的長;
(2)設CP=x,問當x為何值時△PDQ的面積達到最大,并求出最大值;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

精英家教網在梯形ABCD中,∠ABC=90°,AD∥BC,BC>AD,AB=8cm,BC=18cm,CD=10cm,點P從點B開始沿BC邊向終點C以每秒3cm的速度移動,點Q從點D開始沿DA邊向終點A以每秒2cm的速度移動,設運動時間為t秒.
(1)求四邊形ABPQ為矩形時t的值;
(2)若題設中的“BC=18cm”改變?yōu)椤癇C=kcm”,其它條件都不變,要使四邊形PCDQ是等腰梯形,求t與k的函數關系式,并寫出k的取值范圍;
(3)在移動的過程中,是否存在t使P、Q兩點的距離為10cm?若存在求t的值,若不存在請說明理由.

查看答案和解析>>

一 選擇題(共20分,每小題2分)

1. B  2 . B  3. C 4 .A  5 C  6 . C   7. C   8. A   9 . B   10.  D

.

二,填空題。(共24分,每小題3分)

11 .  12 .    13 .     14 .   15.    16 .  17 .  18 ..

三、

19解:

 

 

 

 

時,原式=

20(1)如圖

 

 

 

 

 

 

 

 

(2)優(yōu)等人數為 

     良等人數為 

(3)優(yōu)、良等級的概率分別是   

(4)該校數學成績優(yōu)等、良等人數共占40%、等人數僅占10%,說明該校期末考試成績比較好.(只要合理,均給分)

21.解: (1)∵在Rt△AOB中,∠AOB=900,∠ABO=600,OB=1

        ∴AB=2,OA=

              ∴點A坐標

 

∵二次函數y=ax2+bx+c的圖像經過點A、點B和點C

  解得

∴該二次函數的表達式

(2)對稱軸為;頂點坐標為

(3)∵對稱軸為,A

∴點D坐標

∴四邊形ABCD為等腰梯形

22.解:過點D作DE⊥BC交BC延長線于點E,過點E作EF∥AD交AB于點F

在Rt△CDE中,∠CED=90°,∠DCE=30°,CD=10

∴DE=5,  CE=

∴BE=

∵太陽光線AD與水平地面成30°角

∴∠FEB=30°

在Rt△BFE中,∠B=90°,∠FEB=30°,BE=

∴BF=BE?tan∠FEB==

∵AF=DE=5

∴AB=AF+BF===19.1≈19

答旗桿AB的高度為19米.

 

23解:⑴

⑵如圖所示

 

 

 

⑶如圖所示

 

 

 

 

24.解:(1)如圖1,AE=AF. 理由:證明△ABE≌△ADF(ASA)

(2)如圖2, PE=PF.

理由:過點P作PM⊥BC于M,PN⊥DC于N,則PM=PN.由此可證得△PME≌△PNF(ASA),從而證得PE=PF.

      (3) PE、PF不具有(2)中的數量關系.

當點P在AC的中點時,PE、PF才具有(2)中的數量關系.

25.解:(1)由已知條件,得

  (2)由已知條件,得

      

      解得   

    

 

∴應從A村運到甲庫50噸,運到乙?guī)?50噸;從B村運到甲庫190噸,運到乙?guī)?10噸,這樣調運就能使總運費最少.

(3)這個同學說的對.

理由:設A村的運費為元,則,

∴當x=200時,A村的運費最少,

而y=-2x+9680(0≤x≤200)

∵K=-2<0

∴X=200時,y有最小值,兩村的總運費也是最少。

即當x=200時,A村和兩村的總運費都最少。

26.解:(1)如圖,作DE⊥AB于E,CF⊥AB于F,

依題意可知,四邊形CDEF是矩形,AE=BF,

在Rt△ADE中,

∴梯形ABCD的周長為, 面積為.

(2)∵PQ平分梯形ABCD的周長,

解得

∴當PQ平分梯形ABCD的周長時,

(3)∵PQ平分梯形ABCD的面積

∴①當點P在AD邊上時,

解得

②當點P在DC邊上時,

解得

③當點P在CB邊上時,

∵△<0,∴此方程無解.

∴當PQ平分梯形ABCD的面積時,

(4).

 

 


同步練習冊答案