題目列表(包括答案和解析)
在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。
【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個(gè)47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果。
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述) .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個(gè)長為,寬為的矩形,構(gòu)造圖④
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個(gè)長,寬的矩形之和,加上中間邊長為2的小正方形面積
即:
∵
∴
∴
∵
∴
歸納提煉:求關(guān)于的一元二次方程的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)
【研究不等關(guān)系】
提出問題:怎么運(yùn)用矩形面積表示與的大小關(guān)系(其中)?
幾何建模:
(1)畫長,寬的矩形,按圖⑤方式分割
(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,
畫點(diǎn)部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:>,即
>
歸納提煉:
當(dāng),時(shí),表示與的大小關(guān)系
根據(jù)題意,設(shè),,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)
1 |
2 |
1 |
2 |
7 |
8 |
7 |
8 |
一.1.C; 2.C; 3.C; 4.B; 5.D; 6.B; 7.A; 8.B; 9.A; 10.C。
二.11.x≥2; 12.1; 13.25°; 14.145; 15.16;
16.180; 17.①,③; 。保福
三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分
???????????????????????????????????????????????????????????????????????????????????????????? 5分
當(dāng)時(shí),原式.??????????????????????????????????????????????????????? 7分.
20.解:(1)(名),
本次調(diào)查了90名學(xué)生.?????????????????????????????????????????????????????????????????????????????????????? (2分)
補(bǔ)全的條形統(tǒng)計(jì)圖如下:
(名), 估計(jì)這所學(xué)校有1500名學(xué)生知道母親的生日.??????????????????????????????????????????????????? (6分) (3)略(語言表述積極進(jìn)取,健康向上即可得分).?????????????????????????????????????????????? (7分) 21.(本題滿分8分) 解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°. ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°. ∵ AE∥BF∥CD, ∴ ∠FBC=∠EAC=60°. ∴ ∠DBC=30°. ???????????????????????????????????????? 2分 又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°. ∴ ∠DAB=∠ADB. ∴ BD=AB=2. 即B,D之間的距離為 (2)過B作BO⊥DC,交其延長線于點(diǎn)O, 在Rt△DBO中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分 在Rt△CBO中,∠CBO=30°,CO=BOtan30°=, ∴ CD=DO-CO=(km). 即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分
(2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分) (3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分 設(shè)乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分 . 答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分
23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分 (2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分 的取值范圍為..................................................8分 (3)能;t=2。.............................................................10分. 24.本小題滿分10分. (Ⅰ)證明 將△沿直線對折,得△,連, 則△≌△. ????????????????????????????????????????????????????????????????????????????????????????? 1分 有,,,. 又由,得 . ????????????????????????????????????????? 2分 由, , 得. ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分 又, ∴△≌△. ???????????????????????????????????????????????????????????????????????????????????????????? 4分 有,. ∴.???????????????????????????????????????????????????????????? 5分 ∴在Rt△中,由勾股定理, 得.即. ??????????????????????????????????????????????????????? 6分 (Ⅱ)關(guān)系式仍然成立. ???????????????????????????????????????????????????????????? 7分 證明 將△沿直線對折,得△,連, 則△≌△. ???????????????????????????????????????????????????? 8分 有,, ,. 又由,得 . 由, . 得. ??????????????????????????????????????????????????????????????????????????????????????????????? 8分 又, ∴△≌△. 有,,, ∴. ∴在Rt△中,由勾股定理, 得.即.????????????????????????????????????????????????????????? 9分 (3).能;在直線AB上取點(diǎn)M,N使∠MCN=45°......................10分 25.(本題滿分12分) 解:(1)設(shè)正方形的邊長為cm,則 .?????????????????????????????????????????????????????????????????????????????????????????????? 1分 即. 解得(不合題意,舍去),. 剪去的正方形的邊長為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分 (注:通過觀察、驗(yàn)證直接寫出正確結(jié)果給3分) (2)有側(cè)面積最大的情況. 設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2, 則與的函數(shù)關(guān)系式為: . 即.????????????????????????????????????????????????????????????????????????????????????????????????????? 5分 改寫為. 當(dāng)時(shí),. 即當(dāng)剪去的正方形的邊長為2.25cm時(shí),長方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分 (3)有側(cè)面積最大的情況. 設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2. 若按圖1所示的方法剪折,則與的函數(shù)關(guān)系式為: . 即. 當(dāng)時(shí),.??????????????????????????????????? 9分 若按圖2所示的方法剪折,則與的函數(shù)關(guān)系式為: . 即. 當(dāng)時(shí),.??????????????????????????????????????????????????????????????????????????????????????? 11分 比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長為cm時(shí),折成的有蓋長方體盒子的側(cè)面積最大,最大面積為cm2. 說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù). 26.(本小題滿分12分) 解:(1)在Rt△ABC中,, 由題意知:AP = 5-t,AQ = 2t, 若PQ∥BC,則△APQ ∽△ABC, ∴, ∴, ∴. ??????????????????????????????????????????????????????? 3′ (2)過點(diǎn)P作PH⊥AC于H. ∵△APH ∽△ABC, ∴, ∴, ∴, ∴. ??????????????????????????????????????????? 6′ (3)若PQ把△ABC周長平分, 則AP+AQ=BP+BC+CQ. ∴, 解得:. 若PQ把△ABC面積平分, 則, 即-+3t=3. ∵ t=1代入上面方程不成立, ∴不存在這一時(shí)刻t,使線段PQ把Rt△ACB的周長和面積同時(shí)平分.???????????????? 9′ (4)過點(diǎn)P作PM⊥AC于M,PN⊥BC于N, 若四邊形PQP ′ C是菱形,那么PQ=PC. ∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC. ∴, ∴, ∴, ∴, ∴, 解得:. ∴當(dāng)時(shí),四邊形PQP ′ C 是菱形. 此時(shí), , 在Rt△PMC中,, ∴菱形PQP ′ C邊長為.?????????????????????????????????????????????????????????????????????????? 12′
同步練習(xí)冊答案 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū) 違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。 ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號 |