當x=-2時.y=-4-1=5.即a=-5. (2)設L2的關系式為y=kx.把代入得-5=2k.k=-, ∴L1的關系式為y=-x. ∴是方程組的解. 查看更多

 

題目列表(包括答案和解析)

請同學們認真閱讀下面材料,然后解答問題.
解方程(x2-1)2-5(x-1)+4=0
解:設y=x2-1
則原方程化為:y2-5y+4=0   ①∴y1=1 y2=4
當y=1時,有x2-1=1,即x2=2∴x=±
2

當y=4時,有x2-1=4,即x2=5∴x=±
5

∴原方程的解為:x1=-
2
x2=
2
x3=-
5
x4=
5

解答問題:
(1)填空:在由原方程得到①的過程中,利用
 
法達到了降次的目的,體現了
 
的數學思想.
(2)解方程(x2-3)2-3(x2-3)=0.

查看答案和解析>>

如果設f(x)=
x2
x2+1
,那么f(a)表示當x=a時,
x2
x2+1
的值,即f(a)=
a2
a2+1
.如:f(1)=
12
12+1
=
1
2

(1)求f(2)+f(
1
2
)的值;
(2)求f(x)+f(
1
x
)的值;
(3)計算:f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n

(結果用含有n的代數式表示,n為正整數)

查看答案和解析>>

請同學們認真閱讀下面材料,然后解答問題.
解方程(x2-1)2-5(x-1)+4=0
解:設y=x2-1
則原方程化為:y2-5y+4=0   ①∴y1=1 y2=4
當y=1時,有x2-1=1,即x2=2∴x=±
當y=4時,有x2-1=4,即x2=5∴x=±
∴原方程的解為:x1=-x2=x3=-x4=
解答問題:
(1)填空:在由原方程得到①的過程中,利用______法達到了降次的目的,體現了______的數學思想.
(2)解方程(x2-3)2-3(x2-3)=0.

查看答案和解析>>

如果設f(x)=
x2
x2+1
,那么f(a)表示當x=a時,
x2
x2+1
的值,即f(a)=
a2
a2+1
.如:f(1)=
12
12+1
=
1
2

(1)求f(2)+f(
1
2
)的值;
(2)求f(x)+f(
1
x
)的值;
(3)計算:f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n

(結果用含有n的代數式表示,n為正整數)

查看答案和解析>>

請同學們認真閱讀下面材料,然后解答問題.
解方程(x2-1)2-5(x-1)+4=0
解:設y=x2-1
則原方程化為:y2-5y+4=0   ①∴y1=1 y2=4
當y=1時,有x2-1=1,即x2=2∴x=±
當y=4時,有x2-1=4,即x2=5∴x=±
∴原方程的解為:x1=-x2=x3=-x4=
解答問題:
(1)填空:在由原方程得到①的過程中,利用______法達到了降次的目的,體現了______的數學思想.
(2)解方程(x2-3)2-3(x2-3)=0.

查看答案和解析>>


同步練習冊答案