7.線段的垂直平分線上的點 ,反過來.與一條線段兩個端點距離相等的點在這條線段的 上.因此線段的垂直平分線可以看成 的集合. 查看更多

 

題目列表(包括答案和解析)

線段的垂直平分線上的點_______________________________;反過來,與一條線段兩個端點距離相等的點在這條線段的____________________上,因此線段的垂直平分線可以看成___________________的集合.

查看答案和解析>>

)如圖1,RtABCAB = AC,點D、E是線段AC上兩動點,且AD = EC,AMBD,垂足為MAM的延長線交BC于點N,直線BD與直線NE相交于點F。試判斷△DEF的形狀,并加以證明。

說明:⑴如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫

3步);⑵在你經(jīng)歷說明⑴的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明。

注意:選、偻瓿勺C明得10分;選、谕瓿勺C明得5分。

①畫出將△BAD沿BA方向平移BA長,然后順時針旋轉90°后圖形;

②點K在線段BD上,且四邊形AKNC為等腰梯形(ACKN,如圖2)。

附加題:如圖3,若點D、E是直線AC上兩動點,其他條件不變,試判斷△DEF的形狀,并說明理由。

查看答案和解析>>

簡單的軸對稱圖形
(1)角是軸對稱圖形,它的對稱軸是它的平分線所在的直線.角平分線上的點到
角的兩邊
角的兩邊
的距離相等;到一個角的兩邊距離相等的點,在
這個角的平分線
這個角的平分線
上.
(2)線段是軸對稱圖形,線段的
垂直平分線
垂直平分線
是它的一條對稱軸.線段的
垂直平分線
垂直平分線
上的點到這條線段兩個端點的距離相等.
到線段兩端點距離相等
到線段兩端點距離相等
的點,在這條線段的垂直平分線上.
軸對稱和軸對稱圖形的區(qū)別與聯(lián)系:
區(qū)別:(1)軸對稱是說兩個圖形的位置關系,軸對稱圖形是說一個具有特殊形狀的圖形;
(2)軸對稱是對兩個圖形說的,軸對稱圖形是對一個圖形說的.
聯(lián)系:(1)它們的定義中,都有沿某直線折疊,圖形重合;
(2)如果把兩個成軸對稱的圖形看成一個整體,那么它就是一個軸對稱圖形,反過來,把軸對稱圖形的兩部分當作兩個圖形,那么這兩個圖形成軸對稱.
提問:等腰三角形的判定與性質?

查看答案和解析>>

簡單的軸對稱圖形
(1)角是軸對稱圖形,它的對稱軸是它的平分線所在的直線.角平分線上的點到______的距離相等;到一個角的兩邊距離相等的點,在______上.
(2)線段是軸對稱圖形,線段的______是它的一條對稱軸.線段的______上的點到這條線段兩個端點的距離相等.______的點,在這條線段的垂直平分線上.
軸對稱和軸對稱圖形的區(qū)別與聯(lián)系:
區(qū)別:(1)軸對稱是說兩個圖形的位置關系,軸對稱圖形是說一個具有特殊形狀的圖形;
(2)軸對稱是對兩個圖形說的,軸對稱圖形是對一個圖形說的.
聯(lián)系:(1)它們的定義中,都有沿某直線折疊,圖形重合;
(2)如果把兩個成軸對稱的圖形看成一個整體,那么它就是一個軸對稱圖形,反過來,把軸對稱圖形的兩部分當作兩個圖形,那么這兩個圖形成軸對稱.
提問:等腰三角形的判定與性質?

查看答案和解析>>

簡單的軸對稱圖形
(1)角是軸對稱圖形,它的對稱軸是它的平分線所在的直線.角平分線上的點到______的距離相等;到一個角的兩邊距離相等的點,在______上.
(2)線段是軸對稱圖形,線段的______是它的一條對稱軸.線段的______上的點到這條線段兩個端點的距離相等.______的點,在這條線段的垂直平分線上.
軸對稱和軸對稱圖形的區(qū)別與聯(lián)系:
區(qū)別:(1)軸對稱是說兩個圖形的位置關系,軸對稱圖形是說一個具有特殊形狀的圖形;
(2)軸對稱是對兩個圖形說的,軸對稱圖形是對一個圖形說的.
聯(lián)系:(1)它們的定義中,都有沿某直線折疊,圖形重合;
(2)如果把兩個成軸對稱的圖形看成一個整體,那么它就是一個軸對稱圖形,反過來,把軸對稱圖形的兩部分當作兩個圖形,那么這兩個圖形成軸對稱.
提問:等腰三角形的判定與性質?

查看答案和解析>>


同步練習冊答案