從0.1.2.3.4.5.6.7.8.9十個(gè)數(shù)字中.選出一個(gè)偶數(shù)和三個(gè)奇數(shù).組成一個(gè)沒(méi)有重復(fù)數(shù)字的四位數(shù).這樣的四位數(shù)共有.1480個(gè) 1200個(gè) 查看更多

 

題目列表(包括答案和解析)

13、從0,1,2,3,4,5,6,7,8,9中取出不同的5個(gè)數(shù)字組成一個(gè)5位偶數(shù).
(1)有多少個(gè)這樣的數(shù)?
(2)所有這些5位數(shù)的個(gè)位數(shù)字的和是多少?

查看答案和解析>>

7、從0,1,2,3,4,5,6,7,8,9十個(gè)數(shù)字中,選出一個(gè)偶數(shù)和三個(gè)奇數(shù),組成一個(gè)沒(méi)有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)共有(  )

查看答案和解析>>

6、從0,1,2,3,4,5,6,7七個(gè)數(shù)中任取兩個(gè)數(shù)相乘,使所得的積為偶數(shù),這樣的偶數(shù)共有幾個(gè)?

查看答案和解析>>

從0,1,2,3,4,5,6,7,8,9這10個(gè)數(shù)中取出3個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有
51
51
種.

查看答案和解析>>

從0,1,2,3,4,5,6,7,8,9這10個(gè)數(shù)字中任取3個(gè)不同的數(shù)字構(gòu)成空間直角坐標(biāo)系中的點(diǎn)的坐標(biāo),若是3的倍數(shù),則滿(mǎn)足條件的點(diǎn)的個(gè)數(shù)為

A.252              B.216              C.72               D.42

 

查看答案和解析>>

一.選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

B

D

D

B

D

A

C

C

A

A

二.填空題(每小題4分,共16分)

13.     14.    15.     16.  -  

三、解答題:(本大題共6個(gè)小題,共74分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟).

17、(本小題滿(mǎn)分12分)

解:由得:

(3分)

因?yàn)?sub>所以   所以  (6分)

由正弦定理得.      (8分)  從而由余弦定理及得:

    (12分)

18、(本小題滿(mǎn)分12分)

解:(1)∵這支籃球隊(duì)與其他各隊(duì)比賽勝場(chǎng)的事件是相互獨(dú)立的,

∴首次勝場(chǎng)前已負(fù)了兩場(chǎng)的概率P=(1-)×(1-=.   4分

(2)設(shè)A表示這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的事件,則P(A)就是6次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C()3(1-)3=.     8分

(3)設(shè)ξ表示這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù),則ξB(6,).

=6××(1-)=,Eξ=6×=2.

故這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望是2,方差是.     12分

19、(本小題滿(mǎn)分12分)

解: (4分)

,

  ( 6分)

當(dāng)時(shí),當(dāng)時(shí),,(9分)

當(dāng)時(shí),

當(dāng)時(shí), (11分)

綜上,

文本框: 圖2

所以,為等差數(shù)列.(12分)

20.(本題?分12分)

解 (1)如圖2,將已知條件實(shí)現(xiàn)在長(zhǎng)方體中,則直線(xiàn)與平面所成的角為,ks5u直線(xiàn)與平面所成角的為.在直角中,有,故=;在直角中,有

=.               6分

(2)如圖2,作

               

設(shè)二面角的平面角為,則             

得:.                   12分

21、(本小題滿(mǎn)分12分)

解:因?yàn)榫(xiàn)段的兩端點(diǎn)在拋物線(xiàn)上,故可設(shè),設(shè)線(xiàn)段的中點(diǎn),則            7分

,

所以:                              11分

所以,線(xiàn)段的中點(diǎn)的軌跡方程為.    12分

22、(本小題滿(mǎn)分14分)

(1)解:f′(x)=3x2-6ax+b,

過(guò)P1(x1,y1)的切線(xiàn)方程是y-y1=f′(x1)(x-x1)(x1≠0).

又原點(diǎn)在直線(xiàn)上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),

解得x1=.       4分

(2)解:過(guò)Pn(xn,yn)的切線(xiàn)方程是y-yn=f′(xn)(x-xn).

又Pn+1 (xn+1,yn+1)在直線(xiàn)上,

所以(xn+1-xn)2(xn+1+2xn3a)=0.由xn≠xn+1,

解得xn+1+2xn3a=0.        10分

(3)證明:由(2)得xn+1-a=-2(xn-a),

所以數(shù)列{xn-a}是首項(xiàng)為x1-a=,公比為-2的等比數(shù)列.

∴xn=a+?(-2)n-1,

即xn=[1-(-2)n-2]a.

當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí), xn>a.     14分

 

 

 

 


同步練習(xí)冊(cè)答案