求橢圓的離心率的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切。

(Ⅰ)求橢圓C1的方程;

(Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(Ⅲ)設(shè)C2與x軸交于點Q,不同的兩點R、S在C2上,且 滿足,求的取值范圍。

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

已知橢圓的離心率為以原點O為圓心,橢圓的短半軸長為半徑的圓與直線相切。

   (I)求橢圓C的方程;

   (II)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連結(jié)PB交橢圓C于另一點E,證明直線AE與x軸交于定點Q;

 (III)在(II)條件下,過點Q的直線與橢圓C交于M,N兩點,求的取值范圍。

查看答案和解析>>

已知橢圓的離心率為以原點O為圓心,橢圓的短半軸長為半徑的圓與直線相切。

   (I)求橢圓C的方程;

   (II)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連結(jié)PB交橢圓C于另一點E,證明直線AE與x軸交于定點Q;

 (III)在(II)條件下,過點Q的直線與橢圓C交于M,N兩點,求的取值范圍。

查看答案和解析>>

    已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,過點P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點。

    (1)求橢圓C的方程;

    (2)求的取值范圍;

    (3)若B點在于x軸的對稱點是E,證明:直線AE與x軸相交于定點。

查看答案和解析>>


同步練習(xí)冊答案