已知函數(shù)的單調(diào)遞減區(qū)間是.且滿足 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax2-2
4+2b-b2
x
,g(x)=-
1-(x-a)2
(a,b∈R).
(1)當(dāng)b=0時(shí),若f(x)在(-∞,2]上單調(diào)遞減,求a的取值范圍;
(2)求滿足下列條件的所有整數(shù)對(duì)(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)對(duì)滿足(2)中的條件的整數(shù)對(duì)(a,b),奇函數(shù)h(x)的定義域和值域都是區(qū)間[-k,k],且x∈[-k,0]時(shí),h(x)=f(x),求k的值.

查看答案和解析>>

已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞減.若實(shí)數(shù)a滿足f(log2a)+f(log
1
2
a
)≤2f(1),則a的取值范圍是( 。

查看答案和解析>>

已知函數(shù)f(x)是定義域在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞減,求滿足f(x2+2x+3)>f(-x2-4x-5)的x的集合.

查看答案和解析>>

已知函數(shù)滿足:都是偶函數(shù),當(dāng)時(shí),則下列說法錯(cuò)誤的是(     )

A.函數(shù)在區(qū)間[3,4]上單調(diào)遞減;

B.函數(shù)沒有對(duì)稱中心;

C.方程上一定有偶數(shù)個(gè)解;

D.函數(shù)存在極值點(diǎn),且

 

查看答案和解析>>

已知函數(shù)是奇函數(shù),且滿足

(Ⅰ)求實(shí)數(shù)、的值;

(Ⅱ)試證明函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增;

(Ⅲ)是否存在實(shí)數(shù)同時(shí)滿足以下兩個(gè)條件:1不等式對(duì)恒成立; 2方程上有解.若存在,試求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

一、選擇題:本題考查基礎(chǔ)的知識(shí)和基本運(yùn)算,每題5分,滿分60分。

1 C  2 C  3 D  4 B  5 B  6 C  7 A  8 D  9 A  10 C  11 C  12D

二、填空題:本題考查基礎(chǔ)知識(shí)和基本運(yùn)算。每題4分,滿分16分。

    13.1    14.4     15.3  16.9+10+11,4+5+6+7+8,6+7+8+9(選對(duì)其中兩個(gè)即可)

三、解答題:本題共6大題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.本題主要考查三角函數(shù)的圖像和性質(zhì),以及三角變換的知識(shí),考查運(yùn)算求解能力。

解:(I)由圖象知

    將代入

    因?yàn)?sub>,所以

   所以

(II)因?yàn)?sub>所以

 

  ,

 

 

18.本題考查樣本估計(jì)總體,古典概型,頻率分布直方圖等知識(shí),考查數(shù)據(jù)處理能力和分析問題、解決問題的能力。

 解:(I)百米成績?cè)?sub>內(nèi)的頻率為0.32

        0.32

     估計(jì)該年段學(xué)生中百米成績?cè)?sub>內(nèi)的人數(shù)為320人。

    (II)設(shè)圖中從左到右前3個(gè)組的頻率分別為3x,8x,19x依題意,得

        ,

     設(shè)調(diào)查中隨機(jī)抽取了n個(gè)學(xué)生的百米成績,則

     調(diào)查中隨機(jī)抽取了50個(gè)學(xué)生的百米成績。

     (III)百米成績?cè)诘谝唤M的學(xué)生數(shù)有,記他們的成績?yōu)?sub>

    百米成績?cè)诘谖褰M的學(xué)生數(shù)由,記他們的成績?yōu)?sub>

     則從第一、五組中隨機(jī)取出兩個(gè)成績包含的基本事件有

    

   其中滿足成績的差的絕對(duì)值大于1秒所包含的基本事件有

    所以

19.本題主要考查線面平行與垂直關(guān)系,及多面體的體積計(jì)算等基礎(chǔ)知識(shí),考察空間想象能力、抽象概括能力和運(yùn)算求解能力。

(I)證明:取的重點(diǎn)P,連已知M為CB中點(diǎn),,且

  由三視圖可知,四邊形為直角梯形,

 ,四邊形ANPM為平行四邊形,,

 又平面平面,平面

(II)該幾何體的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,

 兩兩垂直

 與BA相交于B,

 平面,BC為三棱錐的高

 取的重點(diǎn),連四邊形的直角梯形且

 ,四邊形ABQN為正方形,,

  平面平面,

相交于B,平面

為四棱錐的體積

                            

20.本題主要考查數(shù)列的該概念、等差數(shù)列、等比數(shù)列的通項(xiàng)及前n項(xiàng)和等基礎(chǔ)知識(shí),考察推理論證能力、函數(shù)與方程思想以及分類與整合思想

   解:(I)時(shí),

       時(shí),

      

      不是等比數(shù)列

      (II),

    

     所以當(dāng)時(shí)有:

     當(dāng)時(shí)有:

     的最小值為

      (注:作商比較也可)

21.本題主要考查直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考察運(yùn)算求解能力及化歸與轉(zhuǎn)換和數(shù)形結(jié)合思想。

    解:(I)由題意橢圓的長軸,

       在橢圓上,

       橢圓的方程為

   (II)由直線l與圓O相切得

    設(shè),由消去,整理得

 

   由題可知圓O在橢圓內(nèi),所以直線必與橢圓相交,

  

  

  

的值為

22.本題主要考查函數(shù)與倒數(shù)的基本知識(shí)及綜合應(yīng)用知識(shí)的能力,考察分類與整合思想、化歸與轉(zhuǎn)換思想,考察分析問題和解決問題的能力。

解:(I)由已知得,

    函數(shù)的單調(diào)遞減區(qū)間是(1,2),的解是

   

   的兩個(gè)根本分別是1和2,且

   從,可得

   又

(II)由(I)得,

時(shí),上是增函數(shù),

對(duì)當(dāng)x=2時(shí),

要使上有解,

對(duì)任意恒成立,

對(duì)任意恒成立,

設(shè),則

的符號(hào)與德單調(diào)情況如下表:

m

(0,1)

1

(1,2)

-

0

+

æ

極小值

ä

時(shí),

 

 

 


同步練習(xí)冊(cè)答案