代入①式得.即. 查看更多

 

題目列表(包括答案和解析)

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

長(zhǎng)方體ABCDA1B1C1D1中,ABBC=2,D1D=3,點(diǎn)MB1C1的中點(diǎn),點(diǎn)NAB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.

(1)寫出點(diǎn)DN,M的坐標(biāo);

(2)求線段MDMN的長(zhǎng)度.

[分析] (1)D是原點(diǎn),先寫出A,BB1,C1的坐標(biāo),再由中點(diǎn)坐標(biāo)公式得M,N的坐標(biāo);(2)代入空間中兩點(diǎn)間距離公式即可.

查看答案和解析>>

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

(1)若方程有兩個(gè)相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個(gè)相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.

(1) 求的值;

(2) 若商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大

【解析】(1)利用銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.把x=5,y=11代入,解關(guān)于a的方程即可求a..

(2)在(1)的基礎(chǔ)上,列出利潤(rùn)關(guān)于x的函數(shù)關(guān)系式,

利潤(rùn)=銷售量(銷售單價(jià)-成品單價(jià)),然后利用導(dǎo)數(shù)求其最值即可.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案