C.將函數(shù)的圖象向上平移1個單位可得到函數(shù)的圖象 查看更多

 

題目列表(包括答案和解析)

6、將y=2x的圖象____________再作關(guān)于直線y=x對稱的圖象,可得到函數(shù)y=log2(x+1)的圖象(  )

查看答案和解析>>

設(shè)函數(shù)f(x)的圖象與函數(shù)y=2x的圖象關(guān)于直線y=x對稱,則只需將函數(shù)y=log2(x+1)的圖象作如下變換就能得到函數(shù)f(x)的圖象(  )

查看答案和解析>>

已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向左平行移動
π
6
個單位長度,再將所得函數(shù)圖象上每個點的橫坐標(biāo)縮短到原來的
1
2
(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則g(x)在[0,
π
3
]
上的取值范圍為( 。
A、[1,2]
B、[
1
2
,1]
C、[
3
,2]
D、[1,
3
]

查看答案和解析>>

給出下列四個命題,其中錯誤的命題有( 。﹤.
(1)將函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象;
(2)函數(shù)y=sin2x+cos2x在x∈[0,
π
2
]
上的單調(diào)遞增區(qū)間是[0,
π
8
]

(3)設(shè)A、B、C∈(0,
π
2
)
且sinA-sinC=sinB,cosA+cosC=cosB,則B-A等于-
π
3
;
(4)方程sin2x+2sinx+a=0有解,則a的取值范圍是[-3,1].
(5)在同一坐標(biāo)系中,函數(shù)y=sinx與函數(shù)y=
x
2
的圖象有三個交點.

查看答案和解析>>

如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點A(a,2),將直線l1向上平移3個單位得到的直線l2與雙曲線相交于B、C兩點(點B在第一象限),與y軸交于點D

(1)求反比例函數(shù)的解析式;

(2)求△DOB的面積.

 

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數(shù)的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調(diào)遞減區(qū)間是

       ⑶,∴奇函數(shù)的圖象左移 即得到的圖象,

故函數(shù)的圖象右移后對應(yīng)的函數(shù)成為奇函數(shù).…………………12分

18、(文)解:(1),又. ∴,.

(2)至少需要3秒鐘可同時到達(dá)點.

到達(dá)點的概率. 到達(dá)點的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設(shè)得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數(shù)學(xué)期望

(Ⅱ)由

,∴

 

19、解:(1)取中點,連結(jié),∵的中點,的中點.

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內(nèi)作,,連結(jié),易得,以為原點,軸,軸,軸建立直角坐標(biāo)系,

設(shè),則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設(shè)平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點,當(dāng)是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,,故

為不為0的常數(shù),∴是等比數(shù)列.

(2)由,且時,,得

,∴是以1為首項,為公差的等差數(shù)列,

,故.

(3)由已知,∴

相減得:,∴

遞增,∴,均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因為

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因為     

             所以     

             令      

             因為    

                     

             所以     在(-2,0)和(1,+)上是單調(diào)遞增的;

                           在(-,-2)和(0,1)上是單調(diào)遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令

            時,.  ∴

             ∴ 即.

  (2)∵是R上的奇函數(shù)  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個數(shù).

       即的根的個數(shù).

       令.注意,方程根的個數(shù)即交點個數(shù).

        對, ,

        令, 得

         當(dāng)時,; 當(dāng)時,.  ∴,

         當(dāng)時,;   當(dāng)時,, 但此時

,此時以軸為漸近線。

       ①當(dāng)時,方程無根;

②當(dāng)時,方程只有一個根.

③當(dāng)時,方程有兩個根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數(shù))

故動點的軌跡是以為焦點,實軸長的雙曲線.方程為

(2)方法一:在中,設(shè),,

假設(shè)為等腰直角三角形,則

由②與③得:,

由⑤得:

,

故存在滿足題設(shè)條件.

方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:

所以,

.①

,可設(shè),

.②

由①②得.③

根據(jù)雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設(shè)條件.

 

 

 

 

(理)解:(1) 

,

    于是,所求“果圓”方程為

    .                    

(2)由題意,得  ,即

         ,,得.  

     又.  .                                             

(3)設(shè)“果圓”的方程為,

    記平行弦的斜率為

當(dāng)時,直線與半橢圓的交點是

,與半橢圓的交點是

 的中點滿足  得 .  

      

    綜上所述,當(dāng)時,“果圓”平行弦的中點軌跡總是落在某個橢圓上. 

    當(dāng)時,以為斜率過的直線與半橢圓的交點是.  

由此,在直線右側(cè),以為斜率的平行弦的中點軌跡在直線上,即不在某一橢圓上.   當(dāng)時,可類似討論得到平行弦中點軌跡不都在某一橢圓上.

 


同步練習(xí)冊答案