集合A={x|<0=.B={x || x -b|<a.若“a=1 是“A∩B≠ 的充分條件. 則b的取值范圍是 A.-2≤b<0 B.0<b≤2 C.-3<b<-1 D.-1≤b<2 查看更多

 

題目列表(包括答案和解析)

集合A={x|<0},B={x||x-b|<a},若“a=1”是“A∩B≠”的充分條件,則b的取值范圍是

 A、-2≤b<0   B、0<b≤2   C、-3<b<-1    D、-1≤b<2

查看答案和解析>>

(05年湖南卷理)集合A={x|<0=,B={x || x -b|<a,若“a=1”是“A∩B≠”的充分條件,則b的取值范圍是                                                                (  。

     A.-2≤b<0        B.0<b≤2           C.-3<b<-1    D.-1≤b<2

查看答案和解析>>

若集合A={x | 2x-1|>0},B={x| | x|<1},則A∩B=_________ .

查看答案和解析>>

已知集合A={xx2x20},B={xaxa3=且滿足AB,則實數(shù)a的取值范圍是    ?

查看答案和解析>>

已知集合A={xRx2x2≤0},B={xRaxa3=且AB,則實數(shù)a的取值范圍是_________________.

 

查看答案和解析>>

1、D 2、D 3、(理)B(文)4、C 5、C 6、(理)A(文)D 7、C 8、D 9、(理)B(文)A

10、D

二、填空題

11、2  12、(理)1(文)―1  13、96  14、10、32

三、解答題

15、解:(Ⅰ)由,得

,得

所以.??????????????????????????????????????????? 5分

(Ⅱ)由

由(Ⅰ)知,

,??????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

,

,

所以.????????????????????????????????????????????????????????????????????????????????????? 10分

17、(理)解: (1)     則  列表如下

           

+

0

-

-

單調(diào)增

極大值

單調(diào)減

單調(diào)減

     (2)   在   兩邊取對數(shù), 得 ,由于所以

         (1)

由(1)的結(jié)果可知,當時,  ,

為使(1)式對所有成立,當且僅當,即

(文)解:(1)  ,由于函數(shù)時取得極值,所以

    即

 (2) 方法一:由題設(shè)知:對任意都成立

    即對任意都成立

   設(shè) , 則對任意,為單調(diào)遞增函數(shù)

   所以對任意恒成立的充分必要條件是

   即 ,

   于是的取值范圍是

18、解:證明:(Ⅰ)作AD的中點O,則VO⊥底面ABCD.…………………………1分                

建立空間直角坐標系,并設(shè)正方形邊長為1,…………………………2分

則A(,0,0),B(,1,0),C(-,1,0),

D(-,0,0),V(0,0,),

………………………………3分

……………………………………4分

……………………………………5分

又AB∩AV=A

∴AB⊥平面VAD…………………………………………………………………………6分

 

(Ⅱ)由(Ⅰ)得是面VAD的法向量………………………………7分

設(shè)是面VDB的法向量,則

……9分

,……………………………………11分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為…………12分

 

 

 

 


同步練習冊答案