復(fù)數(shù)在復(fù)平面內(nèi).z所對(duì)應(yīng)的點(diǎn)在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 查看更多

 

題目列表(包括答案和解析)

復(fù)數(shù)z=
-1+i
1+i
-1在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

復(fù)數(shù)z=
-1+i1+i
-1.
在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在第
 
象限.

查看答案和解析>>

復(fù)數(shù)在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在                         

A.第一象限       B.第二象限      

C.第三象限       D.第四象限

查看答案和解析>>

復(fù)數(shù)z=-1在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

復(fù)數(shù)z=
-1+i
1+i
-1.
在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在第______象限.

查看答案和解析>>

1、D 2、D 3、(理)B(文)4、C 5、C 6、(理)A(文)D 7、C 8、D 9、(理)B(文)A

10、D

二、填空題

11、2  12、(理)1(文)―1  13、96  14、10、32

三、解答題

15、解:(Ⅰ)由,得,

,得

所以.??????????????????????????????????????????? 5分

(Ⅱ)由,

由(Ⅰ)知

,??????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

,

所以.????????????????????????????????????????????????????????????????????????????????????? 10分

17、(理)解: (1)     則  列表如下

           

+

0

-

-

單調(diào)增

極大值

單調(diào)減

單調(diào)減

     (2)   在   兩邊取對(duì)數(shù), 得 ,由于所以

         (1)

由(1)的結(jié)果可知,當(dāng)時(shí),  ,

為使(1)式對(duì)所有成立,當(dāng)且僅當(dāng),即

(文)解:(1)  ,由于函數(shù)時(shí)取得極值,所以

    即

 (2) 方法一:由題設(shè)知:對(duì)任意都成立

    即對(duì)任意都成立

   設(shè) , 則對(duì)任意,為單調(diào)遞增函數(shù)

   所以對(duì)任意,恒成立的充分必要條件是

   即

   于是的取值范圍是

18、解:證明:(Ⅰ)作AD的中點(diǎn)O,則VO⊥底面ABCD.…………………………1分                

建立空間直角坐標(biāo)系,并設(shè)正方形邊長(zhǎng)為1,…………………………2分

則A(,0,0),B(,1,0),C(-,1,0),

D(-,0,0),V(0,0,),

………………………………3分

……………………………………4分

……………………………………5分

又AB∩AV=A

∴AB⊥平面VAD…………………………………………………………………………6分

 

(Ⅱ)由(Ⅰ)得是面VAD的法向量………………………………7分

設(shè)是面VDB的法向量,則

……9分

,……………………………………11分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為…………12分

 

 

 

 


同步練習(xí)冊(cè)答案